import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Load data (assuming your data loading and preprocessing are handled elsewhere) def recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, companies, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec): input_hard_skills_vec = tfidf_vectorizer_skills.transform([input_hard_skills]) input_soft_skills_vec = tfidf_vectorizer_skills.transform([input_soft_skills]) input_major_vec = tfidf_vectorizer_majors.transform([input_major]) # Average the vectorized hard and soft skills input_skills_vec = (input_hard_skills_vec + input_soft_skills_vec) / 2 # Compute similarities skills_similarity = cosine_similarity(input_skills_vec, companies_skills_vec) major_similarity = cosine_similarity(input_major_vec, companies_majors_vec) # Ensure the number of companies in both similarities is aligned if skills_similarity.shape[1] != major_similarity.shape[1]: min_dim = min(skills_similarity.shape[1], major_similarity.shape[1]) skills_similarity = skills_similarity[:, :min_dim] major_similarity = major_similarity[:, :min_dim] # Combine similarities combined_similarity = (skills_similarity + major_similarity) / 2 # Get top 3 job recommendations sorted_company_indices = np.argsort(-combined_similarity[0]) recommended_companies = companies.iloc[sorted_company_indices]['Major'].values[:3] return recommended_companies # Example usage if run as a script if __name__ == "__main__": # Load necessary data (you may need to adjust paths based on your actual data location) users_data = "1st_train.csv" applicants = pd.read_csv(users_data) jobs_data = "jobs_data.csv" companies = pd.read_csv(jobs_data) # Preprocess data as needed # Vectorize skills and majors tfidf_vectorizer_skills = TfidfVectorizer() tfidf_vectorizer_majors = TfidfVectorizer() # Fit vectorizers on all skills and majors all_skills = pd.concat([applicants['final_hard_skill'], applicants['final_soft_skill'], companies['final_hard_skill'], companies['final_soft_skill']]) all_majors = pd.concat([applicants['candidate_field'], companies['Major']]) all_skills_vectorized = tfidf_vectorizer_skills.fit_transform(all_skills) all_majors_vectorized = tfidf_vectorizer_majors.fit_transform(all_majors) # Split the TF-IDF vectors back into applicants and companies num_applicants = len(applicants) num_companies = len(companies) applicants_skills_vectorized = all_skills_vectorized[:num_applicants*2] # because each applicant has 2 skill entries companies_skills_vectorized = all_skills_vectorized[num_applicants*2:] applicants_majors_vectorized = all_majors_vectorized[:num_applicants] companies_majors_vectorized = all_majors_vectorized[num_applicants:] # Example input input_hard_skills = "Business, Finance, Excel" input_soft_skills = "Communication, Teamwork" input_major = "Marketing" recommended_jobs = recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, companies, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vectorized, companies_majors_vectorized) print("Recommended Jobs based on input skills and major:") print(recommended_jobs)