File size: 2,282 Bytes
c527a87
 
 
 
 
 
 
 
13ecb5d
c527a87
341a4a9
c527a87
 
 
13ecb5d
c527a87
 
 
 
 
13ecb5d
341a4a9
13ecb5d
c527a87
 
 
 
 
341a4a9
c527a87
0993da2
 
c527a87
341a4a9
 
c527a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341a4a9
c527a87
 
 
 
 
341a4a9
 
 
 
 
c527a87
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-clinc
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: clinc_oos
      type: clinc_oos
      args: plus
    metrics:
    - type: accuracy
      value: 0.9174193548387096
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-clinc

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. The model is used in Chapter 8: Making Transformers Efficient in Production in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb).

It achieves the following results on the evaluation set:
- Loss: 0.7773
- Accuracy: 0.9174

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.2923        | 1.0   | 318  | 3.2893          | 0.7423   |
| 2.6307        | 2.0   | 636  | 1.8837          | 0.8281   |
| 1.5483        | 3.0   | 954  | 1.1583          | 0.8968   |
| 1.0153        | 4.0   | 1272 | 0.8618          | 0.9094   |
| 0.7958        | 5.0   | 1590 | 0.7773          | 0.9174   |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.13.0
- Tokenizers 0.10.3