trapoom555
commited on
Commit
•
f14ec11
1
Parent(s):
4e4a281
Upload checkpoints
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- checkpoints/.DS_Store +0 -0
- checkpoints/checkpoint-1000/README.md +202 -0
- checkpoints/checkpoint-1000/adapter_config.json +29 -0
- checkpoints/checkpoint-1000/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoints/checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoints/checkpoint-1000/latest +1 -0
- checkpoints/checkpoint-1000/rng_state.pth +3 -0
- checkpoints/checkpoint-1000/scheduler.pt +3 -0
- checkpoints/checkpoint-1000/special_tokens_map.json +24 -0
- checkpoints/checkpoint-1000/tokenizer.json +0 -0
- checkpoints/checkpoint-1000/tokenizer_config.json +42 -0
- checkpoints/checkpoint-1000/trainer_state.json +737 -0
- checkpoints/checkpoint-1000/training_args.bin +3 -0
- checkpoints/checkpoint-1000/zero_to_fp32.py +604 -0
- checkpoints/checkpoint-1500/README.md +202 -0
- checkpoints/checkpoint-1500/adapter_config.json +29 -0
- checkpoints/checkpoint-1500/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-1500/global_step1500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoints/checkpoint-1500/global_step1500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoints/checkpoint-1500/latest +1 -0
- checkpoints/checkpoint-1500/rng_state.pth +3 -0
- checkpoints/checkpoint-1500/scheduler.pt +3 -0
- checkpoints/checkpoint-1500/special_tokens_map.json +24 -0
- checkpoints/checkpoint-1500/tokenizer.json +0 -0
- checkpoints/checkpoint-1500/tokenizer_config.json +42 -0
- checkpoints/checkpoint-1500/trainer_state.json +1095 -0
- checkpoints/checkpoint-1500/training_args.bin +3 -0
- checkpoints/checkpoint-1500/zero_to_fp32.py +604 -0
- checkpoints/checkpoint-2000/README.md +202 -0
- checkpoints/checkpoint-2000/adapter_config.json +29 -0
- checkpoints/checkpoint-2000/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoints/checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoints/checkpoint-2000/latest +1 -0
- checkpoints/checkpoint-2000/rng_state.pth +3 -0
- checkpoints/checkpoint-2000/scheduler.pt +3 -0
- checkpoints/checkpoint-2000/special_tokens_map.json +24 -0
- checkpoints/checkpoint-2000/tokenizer.json +0 -0
- checkpoints/checkpoint-2000/tokenizer_config.json +42 -0
- checkpoints/checkpoint-2000/trainer_state.json +1453 -0
- checkpoints/checkpoint-2000/training_args.bin +3 -0
- checkpoints/checkpoint-2000/zero_to_fp32.py +604 -0
- checkpoints/checkpoint-2500/README.md +202 -0
- checkpoints/checkpoint-2500/adapter_config.json +29 -0
- checkpoints/checkpoint-2500/adapter_model.safetensors +3 -0
- checkpoints/checkpoint-2500/global_step2500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc12271f98dc5360edbd7b573143dee888c2dcd38b2bfc2fd39140291875ebb8
|
3 |
+
size 5919456
|
checkpoints/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
checkpoints/checkpoint-1000/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-1000/adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
checkpoints/checkpoint-1000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d0b71af557e40475bbd0ed5580b1163fc1e5813e6f18549c162fde489d38b7f
|
3 |
+
size 5919456
|
checkpoints/checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4a4c216a05e414bd591cc3e065a79ed8d7d527e52eb808fce6d214c43d12a8a
|
3 |
+
size 35393392
|
checkpoints/checkpoint-1000/global_step1000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3394fcb77dc912f199fe9c2ebfb5a65dd81faa98b7bd60c9a238314ef859fcee
|
3 |
+
size 183275
|
checkpoints/checkpoint-1000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1000
|
checkpoints/checkpoint-1000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8e0d9241eef1fbbb5da2f0e430c8a311fd2376d925c255c8ae5c0b1105086c8
|
3 |
+
size 14244
|
checkpoints/checkpoint-1000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fac7b4ec7da78a13fae6d5e24455e41750b089d8c7eca1f0a65f95de6385bb8
|
3 |
+
size 1064
|
checkpoints/checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoints/checkpoint-1000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": "</s>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|
checkpoints/checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.5350454788657036,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 7.3019086777975994,
|
14 |
+
"learning_rate": 5e-06,
|
15 |
+
"loss": 0.6939,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"grad_norm": 5.150989333266983,
|
21 |
+
"learning_rate": 1e-05,
|
22 |
+
"loss": 0.7167,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.02,
|
27 |
+
"grad_norm": 3.640558809610037,
|
28 |
+
"learning_rate": 1.5e-05,
|
29 |
+
"loss": 0.5683,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.02,
|
34 |
+
"grad_norm": 7.517999397731128,
|
35 |
+
"learning_rate": 2e-05,
|
36 |
+
"loss": 0.5472,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.03,
|
41 |
+
"grad_norm": 1.9687061679463425,
|
42 |
+
"learning_rate": 2.5e-05,
|
43 |
+
"loss": 0.4439,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03,
|
48 |
+
"grad_norm": 3.643479206523606,
|
49 |
+
"learning_rate": 3e-05,
|
50 |
+
"loss": 0.2486,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04,
|
55 |
+
"grad_norm": 2.2754773308695095,
|
56 |
+
"learning_rate": 3.5e-05,
|
57 |
+
"loss": 0.2217,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.04,
|
62 |
+
"grad_norm": 1.7144730049127388,
|
63 |
+
"learning_rate": 4e-05,
|
64 |
+
"loss": 0.169,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.05,
|
69 |
+
"grad_norm": 3.4702829704135114,
|
70 |
+
"learning_rate": 4.5e-05,
|
71 |
+
"loss": 0.1994,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.05,
|
76 |
+
"grad_norm": 1.3985127340985621,
|
77 |
+
"learning_rate": 5e-05,
|
78 |
+
"loss": 0.1612,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.06,
|
83 |
+
"grad_norm": 1.375992184386137,
|
84 |
+
"learning_rate": 4.982758620689655e-05,
|
85 |
+
"loss": 0.1576,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.06,
|
90 |
+
"grad_norm": 1.9528635753013313,
|
91 |
+
"learning_rate": 4.9655172413793107e-05,
|
92 |
+
"loss": 0.1393,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.07,
|
97 |
+
"grad_norm": 4.075169010198401,
|
98 |
+
"learning_rate": 4.9482758620689655e-05,
|
99 |
+
"loss": 0.1969,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.07,
|
104 |
+
"grad_norm": 2.0953991165751207,
|
105 |
+
"learning_rate": 4.931034482758621e-05,
|
106 |
+
"loss": 0.1294,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.08,
|
111 |
+
"grad_norm": 1.942660591044849,
|
112 |
+
"learning_rate": 4.913793103448276e-05,
|
113 |
+
"loss": 0.1306,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.09,
|
118 |
+
"grad_norm": 3.1508904015728345,
|
119 |
+
"learning_rate": 4.896551724137931e-05,
|
120 |
+
"loss": 0.1526,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.09,
|
125 |
+
"grad_norm": 1.9862795165358471,
|
126 |
+
"learning_rate": 4.8793103448275864e-05,
|
127 |
+
"loss": 0.1186,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"grad_norm": 2.633061833817991,
|
133 |
+
"learning_rate": 4.862068965517241e-05,
|
134 |
+
"loss": 0.1457,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.1,
|
139 |
+
"grad_norm": 1.8017052368446178,
|
140 |
+
"learning_rate": 4.844827586206897e-05,
|
141 |
+
"loss": 0.1234,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.11,
|
146 |
+
"grad_norm": 2.1560694100709803,
|
147 |
+
"learning_rate": 4.827586206896552e-05,
|
148 |
+
"loss": 0.1346,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.11,
|
153 |
+
"grad_norm": 1.5737689267430703,
|
154 |
+
"learning_rate": 4.810344827586207e-05,
|
155 |
+
"loss": 0.116,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.12,
|
160 |
+
"grad_norm": 1.957864677854788,
|
161 |
+
"learning_rate": 4.793103448275863e-05,
|
162 |
+
"loss": 0.1692,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.12,
|
167 |
+
"grad_norm": 2.215039223521855,
|
168 |
+
"learning_rate": 4.7758620689655176e-05,
|
169 |
+
"loss": 0.1245,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.13,
|
174 |
+
"grad_norm": 1.370517239734168,
|
175 |
+
"learning_rate": 4.7586206896551725e-05,
|
176 |
+
"loss": 0.1476,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.13,
|
181 |
+
"grad_norm": 1.7341334563022532,
|
182 |
+
"learning_rate": 4.741379310344828e-05,
|
183 |
+
"loss": 0.1236,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.14,
|
188 |
+
"grad_norm": 1.5994298113068974,
|
189 |
+
"learning_rate": 4.724137931034483e-05,
|
190 |
+
"loss": 0.1161,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.14,
|
195 |
+
"grad_norm": 1.5317433190951963,
|
196 |
+
"learning_rate": 4.7068965517241385e-05,
|
197 |
+
"loss": 0.1035,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.15,
|
202 |
+
"grad_norm": 2.191977732539556,
|
203 |
+
"learning_rate": 4.689655172413793e-05,
|
204 |
+
"loss": 0.1427,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.16,
|
209 |
+
"grad_norm": 1.6038667570691656,
|
210 |
+
"learning_rate": 4.672413793103448e-05,
|
211 |
+
"loss": 0.1225,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.16,
|
216 |
+
"grad_norm": 2.577572731831179,
|
217 |
+
"learning_rate": 4.655172413793104e-05,
|
218 |
+
"loss": 0.1399,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.17,
|
223 |
+
"grad_norm": 1.6199241001441385,
|
224 |
+
"learning_rate": 4.6379310344827586e-05,
|
225 |
+
"loss": 0.1242,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.17,
|
230 |
+
"grad_norm": 2.236577821186196,
|
231 |
+
"learning_rate": 4.6206896551724135e-05,
|
232 |
+
"loss": 0.1656,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.18,
|
237 |
+
"grad_norm": 1.7294690605254757,
|
238 |
+
"learning_rate": 4.603448275862069e-05,
|
239 |
+
"loss": 0.1382,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.18,
|
244 |
+
"grad_norm": 2.196527516378511,
|
245 |
+
"learning_rate": 4.586206896551724e-05,
|
246 |
+
"loss": 0.1257,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.19,
|
251 |
+
"grad_norm": 2.1057444340221463,
|
252 |
+
"learning_rate": 4.5689655172413794e-05,
|
253 |
+
"loss": 0.1238,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.19,
|
258 |
+
"grad_norm": 1.5409556870328274,
|
259 |
+
"learning_rate": 4.551724137931035e-05,
|
260 |
+
"loss": 0.1383,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.2,
|
265 |
+
"grad_norm": 1.5204083616874053,
|
266 |
+
"learning_rate": 4.53448275862069e-05,
|
267 |
+
"loss": 0.1068,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.2,
|
272 |
+
"grad_norm": 2.3557725298931746,
|
273 |
+
"learning_rate": 4.5172413793103454e-05,
|
274 |
+
"loss": 0.1071,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.21,
|
279 |
+
"grad_norm": 3.2601538460418644,
|
280 |
+
"learning_rate": 4.5e-05,
|
281 |
+
"loss": 0.125,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.21,
|
286 |
+
"grad_norm": 1.9031725385762286,
|
287 |
+
"learning_rate": 4.482758620689655e-05,
|
288 |
+
"loss": 0.0991,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.22,
|
293 |
+
"grad_norm": 1.3946050262183123,
|
294 |
+
"learning_rate": 4.465517241379311e-05,
|
295 |
+
"loss": 0.1156,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.22,
|
300 |
+
"grad_norm": 1.097644875106397,
|
301 |
+
"learning_rate": 4.4482758620689656e-05,
|
302 |
+
"loss": 0.1366,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.23,
|
307 |
+
"grad_norm": 1.37846299019108,
|
308 |
+
"learning_rate": 4.431034482758621e-05,
|
309 |
+
"loss": 0.126,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.24,
|
314 |
+
"grad_norm": 1.8340152889320331,
|
315 |
+
"learning_rate": 4.413793103448276e-05,
|
316 |
+
"loss": 0.1066,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.24,
|
321 |
+
"grad_norm": 1.8304505611337867,
|
322 |
+
"learning_rate": 4.396551724137931e-05,
|
323 |
+
"loss": 0.0868,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.25,
|
328 |
+
"grad_norm": 1.550196490898523,
|
329 |
+
"learning_rate": 4.3793103448275864e-05,
|
330 |
+
"loss": 0.1286,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.25,
|
335 |
+
"grad_norm": 2.176112247796248,
|
336 |
+
"learning_rate": 4.362068965517241e-05,
|
337 |
+
"loss": 0.1206,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.26,
|
342 |
+
"grad_norm": 1.6589263894091213,
|
343 |
+
"learning_rate": 4.344827586206897e-05,
|
344 |
+
"loss": 0.1008,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.26,
|
349 |
+
"grad_norm": 1.8349611508902046,
|
350 |
+
"learning_rate": 4.327586206896552e-05,
|
351 |
+
"loss": 0.1198,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.27,
|
356 |
+
"grad_norm": 2.1218964920724126,
|
357 |
+
"learning_rate": 4.3103448275862066e-05,
|
358 |
+
"loss": 0.1166,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.27,
|
363 |
+
"eval_loss": 0.6078919172286987,
|
364 |
+
"eval_runtime": 116.8471,
|
365 |
+
"eval_samples_per_second": 11.288,
|
366 |
+
"eval_steps_per_second": 2.824,
|
367 |
+
"step": 500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.27,
|
371 |
+
"grad_norm": 2.5775141311007856,
|
372 |
+
"learning_rate": 4.293103448275863e-05,
|
373 |
+
"loss": 0.1124,
|
374 |
+
"step": 510
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.28,
|
378 |
+
"grad_norm": 1.6019517017800202,
|
379 |
+
"learning_rate": 4.275862068965518e-05,
|
380 |
+
"loss": 0.1068,
|
381 |
+
"step": 520
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.28,
|
385 |
+
"grad_norm": 2.6901962755310205,
|
386 |
+
"learning_rate": 4.2586206896551725e-05,
|
387 |
+
"loss": 0.1286,
|
388 |
+
"step": 530
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.29,
|
392 |
+
"grad_norm": 3.9517995356721767,
|
393 |
+
"learning_rate": 4.241379310344828e-05,
|
394 |
+
"loss": 0.1149,
|
395 |
+
"step": 540
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.29,
|
399 |
+
"grad_norm": 2.0428896228074076,
|
400 |
+
"learning_rate": 4.224137931034483e-05,
|
401 |
+
"loss": 0.141,
|
402 |
+
"step": 550
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.3,
|
406 |
+
"grad_norm": 2.263258592133553,
|
407 |
+
"learning_rate": 4.2068965517241385e-05,
|
408 |
+
"loss": 0.0949,
|
409 |
+
"step": 560
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.3,
|
413 |
+
"grad_norm": 1.4823165953974604,
|
414 |
+
"learning_rate": 4.1896551724137934e-05,
|
415 |
+
"loss": 0.1365,
|
416 |
+
"step": 570
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.31,
|
420 |
+
"grad_norm": 1.4441377020989878,
|
421 |
+
"learning_rate": 4.172413793103448e-05,
|
422 |
+
"loss": 0.1015,
|
423 |
+
"step": 580
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.32,
|
427 |
+
"grad_norm": 1.4779059254436886,
|
428 |
+
"learning_rate": 4.155172413793104e-05,
|
429 |
+
"loss": 0.0988,
|
430 |
+
"step": 590
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.32,
|
434 |
+
"grad_norm": 1.7777823671018818,
|
435 |
+
"learning_rate": 4.1379310344827587e-05,
|
436 |
+
"loss": 0.1124,
|
437 |
+
"step": 600
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.33,
|
441 |
+
"grad_norm": 1.737579831138191,
|
442 |
+
"learning_rate": 4.120689655172414e-05,
|
443 |
+
"loss": 0.086,
|
444 |
+
"step": 610
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.33,
|
448 |
+
"grad_norm": 2.708453961232997,
|
449 |
+
"learning_rate": 4.103448275862069e-05,
|
450 |
+
"loss": 0.0933,
|
451 |
+
"step": 620
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.34,
|
455 |
+
"grad_norm": 1.8871805824236731,
|
456 |
+
"learning_rate": 4.086206896551724e-05,
|
457 |
+
"loss": 0.1407,
|
458 |
+
"step": 630
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.34,
|
462 |
+
"grad_norm": 1.7300112722427339,
|
463 |
+
"learning_rate": 4.0689655172413795e-05,
|
464 |
+
"loss": 0.1224,
|
465 |
+
"step": 640
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.35,
|
469 |
+
"grad_norm": 1.4631236252240614,
|
470 |
+
"learning_rate": 4.0517241379310344e-05,
|
471 |
+
"loss": 0.1014,
|
472 |
+
"step": 650
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.35,
|
476 |
+
"grad_norm": 1.2602431597419264,
|
477 |
+
"learning_rate": 4.03448275862069e-05,
|
478 |
+
"loss": 0.1583,
|
479 |
+
"step": 660
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.36,
|
483 |
+
"grad_norm": 1.2077937041919453,
|
484 |
+
"learning_rate": 4.0172413793103455e-05,
|
485 |
+
"loss": 0.1209,
|
486 |
+
"step": 670
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.36,
|
490 |
+
"grad_norm": 1.4386184566429954,
|
491 |
+
"learning_rate": 4e-05,
|
492 |
+
"loss": 0.1016,
|
493 |
+
"step": 680
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.37,
|
497 |
+
"grad_norm": 2.6160358835758584,
|
498 |
+
"learning_rate": 3.982758620689656e-05,
|
499 |
+
"loss": 0.1062,
|
500 |
+
"step": 690
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.37,
|
504 |
+
"grad_norm": 1.9278794640498955,
|
505 |
+
"learning_rate": 3.965517241379311e-05,
|
506 |
+
"loss": 0.1037,
|
507 |
+
"step": 700
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.38,
|
511 |
+
"grad_norm": 1.2872571900237024,
|
512 |
+
"learning_rate": 3.9482758620689656e-05,
|
513 |
+
"loss": 0.096,
|
514 |
+
"step": 710
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.39,
|
518 |
+
"grad_norm": 1.243554309347296,
|
519 |
+
"learning_rate": 3.931034482758621e-05,
|
520 |
+
"loss": 0.1084,
|
521 |
+
"step": 720
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.39,
|
525 |
+
"grad_norm": 1.5090589714253309,
|
526 |
+
"learning_rate": 3.913793103448276e-05,
|
527 |
+
"loss": 0.0877,
|
528 |
+
"step": 730
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.4,
|
532 |
+
"grad_norm": 2.1419550623025168,
|
533 |
+
"learning_rate": 3.896551724137931e-05,
|
534 |
+
"loss": 0.0994,
|
535 |
+
"step": 740
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.4,
|
539 |
+
"grad_norm": 1.7807417973632438,
|
540 |
+
"learning_rate": 3.8793103448275865e-05,
|
541 |
+
"loss": 0.1029,
|
542 |
+
"step": 750
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.41,
|
546 |
+
"grad_norm": 1.3342960263057682,
|
547 |
+
"learning_rate": 3.862068965517241e-05,
|
548 |
+
"loss": 0.1072,
|
549 |
+
"step": 760
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.41,
|
553 |
+
"grad_norm": 2.3865282340158136,
|
554 |
+
"learning_rate": 3.844827586206897e-05,
|
555 |
+
"loss": 0.1193,
|
556 |
+
"step": 770
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.42,
|
560 |
+
"grad_norm": 1.5428742248459941,
|
561 |
+
"learning_rate": 3.827586206896552e-05,
|
562 |
+
"loss": 0.1156,
|
563 |
+
"step": 780
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.42,
|
567 |
+
"grad_norm": 1.7660532115509044,
|
568 |
+
"learning_rate": 3.8103448275862066e-05,
|
569 |
+
"loss": 0.122,
|
570 |
+
"step": 790
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.43,
|
574 |
+
"grad_norm": 1.8149742752994733,
|
575 |
+
"learning_rate": 3.793103448275862e-05,
|
576 |
+
"loss": 0.1346,
|
577 |
+
"step": 800
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.43,
|
581 |
+
"grad_norm": 1.7456408876472995,
|
582 |
+
"learning_rate": 3.775862068965517e-05,
|
583 |
+
"loss": 0.1223,
|
584 |
+
"step": 810
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.44,
|
588 |
+
"grad_norm": 1.10163248244056,
|
589 |
+
"learning_rate": 3.7586206896551726e-05,
|
590 |
+
"loss": 0.1031,
|
591 |
+
"step": 820
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.44,
|
595 |
+
"grad_norm": 1.6441057737088702,
|
596 |
+
"learning_rate": 3.741379310344828e-05,
|
597 |
+
"loss": 0.1059,
|
598 |
+
"step": 830
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.45,
|
602 |
+
"grad_norm": 2.3999279790163484,
|
603 |
+
"learning_rate": 3.724137931034483e-05,
|
604 |
+
"loss": 0.1125,
|
605 |
+
"step": 840
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.45,
|
609 |
+
"grad_norm": 2.2081477934156903,
|
610 |
+
"learning_rate": 3.7068965517241385e-05,
|
611 |
+
"loss": 0.1266,
|
612 |
+
"step": 850
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.46,
|
616 |
+
"grad_norm": 2.366783771480017,
|
617 |
+
"learning_rate": 3.6896551724137934e-05,
|
618 |
+
"loss": 0.1127,
|
619 |
+
"step": 860
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.47,
|
623 |
+
"grad_norm": 1.3077873674136173,
|
624 |
+
"learning_rate": 3.672413793103448e-05,
|
625 |
+
"loss": 0.1095,
|
626 |
+
"step": 870
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.47,
|
630 |
+
"grad_norm": 1.8197812508114701,
|
631 |
+
"learning_rate": 3.655172413793104e-05,
|
632 |
+
"loss": 0.0932,
|
633 |
+
"step": 880
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.48,
|
637 |
+
"grad_norm": 1.0806192057981219,
|
638 |
+
"learning_rate": 3.637931034482759e-05,
|
639 |
+
"loss": 0.1166,
|
640 |
+
"step": 890
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.48,
|
644 |
+
"grad_norm": 1.520666439337001,
|
645 |
+
"learning_rate": 3.620689655172414e-05,
|
646 |
+
"loss": 0.0883,
|
647 |
+
"step": 900
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.49,
|
651 |
+
"grad_norm": 1.690002270629302,
|
652 |
+
"learning_rate": 3.603448275862069e-05,
|
653 |
+
"loss": 0.1199,
|
654 |
+
"step": 910
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.49,
|
658 |
+
"grad_norm": 1.4319374130118003,
|
659 |
+
"learning_rate": 3.586206896551724e-05,
|
660 |
+
"loss": 0.0991,
|
661 |
+
"step": 920
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.5,
|
665 |
+
"grad_norm": 1.0626084369653164,
|
666 |
+
"learning_rate": 3.5689655172413795e-05,
|
667 |
+
"loss": 0.0923,
|
668 |
+
"step": 930
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.5,
|
672 |
+
"grad_norm": 2.0848060597460902,
|
673 |
+
"learning_rate": 3.5517241379310344e-05,
|
674 |
+
"loss": 0.0979,
|
675 |
+
"step": 940
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.51,
|
679 |
+
"grad_norm": 1.4997189461483256,
|
680 |
+
"learning_rate": 3.53448275862069e-05,
|
681 |
+
"loss": 0.0949,
|
682 |
+
"step": 950
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.51,
|
686 |
+
"grad_norm": 1.7887817042743388,
|
687 |
+
"learning_rate": 3.517241379310345e-05,
|
688 |
+
"loss": 0.1135,
|
689 |
+
"step": 960
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.52,
|
693 |
+
"grad_norm": 3.242965692388458,
|
694 |
+
"learning_rate": 3.5e-05,
|
695 |
+
"loss": 0.1315,
|
696 |
+
"step": 970
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.52,
|
700 |
+
"grad_norm": 1.5034762176322083,
|
701 |
+
"learning_rate": 3.482758620689655e-05,
|
702 |
+
"loss": 0.1177,
|
703 |
+
"step": 980
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.53,
|
707 |
+
"grad_norm": 1.6679474444200848,
|
708 |
+
"learning_rate": 3.465517241379311e-05,
|
709 |
+
"loss": 0.1182,
|
710 |
+
"step": 990
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.54,
|
714 |
+
"grad_norm": 2.814574507251776,
|
715 |
+
"learning_rate": 3.4482758620689657e-05,
|
716 |
+
"loss": 0.0912,
|
717 |
+
"step": 1000
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.54,
|
721 |
+
"eval_loss": 0.6101276874542236,
|
722 |
+
"eval_runtime": 113.9995,
|
723 |
+
"eval_samples_per_second": 11.57,
|
724 |
+
"eval_steps_per_second": 2.895,
|
725 |
+
"step": 1000
|
726 |
+
}
|
727 |
+
],
|
728 |
+
"logging_steps": 10,
|
729 |
+
"max_steps": 3000,
|
730 |
+
"num_input_tokens_seen": 0,
|
731 |
+
"num_train_epochs": 2,
|
732 |
+
"save_steps": 500,
|
733 |
+
"total_flos": 28899016704000.0,
|
734 |
+
"train_batch_size": 4,
|
735 |
+
"trial_name": null,
|
736 |
+
"trial_params": null
|
737 |
+
}
|
checkpoints/checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22266252322e6977894297b61731ca9228c8fcfe4e8d788aef270218c40fec98
|
3 |
+
size 6776
|
checkpoints/checkpoint-1000/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/checkpoint-1500/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-1500/adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
checkpoints/checkpoint-1500/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de9e2856e08d5173f8e2af8a3753fd4b9d7ff846b54a5ff0c58f7c3f5766adbd
|
3 |
+
size 5919456
|
checkpoints/checkpoint-1500/global_step1500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84bae28b1e6bf0e12a34d4a32f9f04cc7dacf4cb9fcc31079d3efe068b295712
|
3 |
+
size 35393392
|
checkpoints/checkpoint-1500/global_step1500/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e17a037ee17783aebea4d60a2ca9224419f83386c47c8f19b0e070d416c5d008
|
3 |
+
size 183275
|
checkpoints/checkpoint-1500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1500
|
checkpoints/checkpoint-1500/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff7bfe3bfc07bfdf7a752b2b29572987f4902cac1a5149315d94e9b25b3c90a
|
3 |
+
size 14244
|
checkpoints/checkpoint-1500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf4ee1a21cac7b0db9a6509d4738739668da3752503f4e308a0d5e0435a00c03
|
3 |
+
size 1064
|
checkpoints/checkpoint-1500/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoints/checkpoint-1500/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/checkpoint-1500/tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": "</s>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|
checkpoints/checkpoint-1500/trainer_state.json
ADDED
@@ -0,0 +1,1095 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.8025682182985554,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 7.3019086777975994,
|
14 |
+
"learning_rate": 5e-06,
|
15 |
+
"loss": 0.6939,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"grad_norm": 5.150989333266983,
|
21 |
+
"learning_rate": 1e-05,
|
22 |
+
"loss": 0.7167,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.02,
|
27 |
+
"grad_norm": 3.640558809610037,
|
28 |
+
"learning_rate": 1.5e-05,
|
29 |
+
"loss": 0.5683,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.02,
|
34 |
+
"grad_norm": 7.517999397731128,
|
35 |
+
"learning_rate": 2e-05,
|
36 |
+
"loss": 0.5472,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.03,
|
41 |
+
"grad_norm": 1.9687061679463425,
|
42 |
+
"learning_rate": 2.5e-05,
|
43 |
+
"loss": 0.4439,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03,
|
48 |
+
"grad_norm": 3.643479206523606,
|
49 |
+
"learning_rate": 3e-05,
|
50 |
+
"loss": 0.2486,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04,
|
55 |
+
"grad_norm": 2.2754773308695095,
|
56 |
+
"learning_rate": 3.5e-05,
|
57 |
+
"loss": 0.2217,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.04,
|
62 |
+
"grad_norm": 1.7144730049127388,
|
63 |
+
"learning_rate": 4e-05,
|
64 |
+
"loss": 0.169,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.05,
|
69 |
+
"grad_norm": 3.4702829704135114,
|
70 |
+
"learning_rate": 4.5e-05,
|
71 |
+
"loss": 0.1994,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.05,
|
76 |
+
"grad_norm": 1.3985127340985621,
|
77 |
+
"learning_rate": 5e-05,
|
78 |
+
"loss": 0.1612,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.06,
|
83 |
+
"grad_norm": 1.375992184386137,
|
84 |
+
"learning_rate": 4.982758620689655e-05,
|
85 |
+
"loss": 0.1576,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.06,
|
90 |
+
"grad_norm": 1.9528635753013313,
|
91 |
+
"learning_rate": 4.9655172413793107e-05,
|
92 |
+
"loss": 0.1393,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.07,
|
97 |
+
"grad_norm": 4.075169010198401,
|
98 |
+
"learning_rate": 4.9482758620689655e-05,
|
99 |
+
"loss": 0.1969,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.07,
|
104 |
+
"grad_norm": 2.0953991165751207,
|
105 |
+
"learning_rate": 4.931034482758621e-05,
|
106 |
+
"loss": 0.1294,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.08,
|
111 |
+
"grad_norm": 1.942660591044849,
|
112 |
+
"learning_rate": 4.913793103448276e-05,
|
113 |
+
"loss": 0.1306,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.09,
|
118 |
+
"grad_norm": 3.1508904015728345,
|
119 |
+
"learning_rate": 4.896551724137931e-05,
|
120 |
+
"loss": 0.1526,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.09,
|
125 |
+
"grad_norm": 1.9862795165358471,
|
126 |
+
"learning_rate": 4.8793103448275864e-05,
|
127 |
+
"loss": 0.1186,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"grad_norm": 2.633061833817991,
|
133 |
+
"learning_rate": 4.862068965517241e-05,
|
134 |
+
"loss": 0.1457,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.1,
|
139 |
+
"grad_norm": 1.8017052368446178,
|
140 |
+
"learning_rate": 4.844827586206897e-05,
|
141 |
+
"loss": 0.1234,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.11,
|
146 |
+
"grad_norm": 2.1560694100709803,
|
147 |
+
"learning_rate": 4.827586206896552e-05,
|
148 |
+
"loss": 0.1346,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.11,
|
153 |
+
"grad_norm": 1.5737689267430703,
|
154 |
+
"learning_rate": 4.810344827586207e-05,
|
155 |
+
"loss": 0.116,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.12,
|
160 |
+
"grad_norm": 1.957864677854788,
|
161 |
+
"learning_rate": 4.793103448275863e-05,
|
162 |
+
"loss": 0.1692,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.12,
|
167 |
+
"grad_norm": 2.215039223521855,
|
168 |
+
"learning_rate": 4.7758620689655176e-05,
|
169 |
+
"loss": 0.1245,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.13,
|
174 |
+
"grad_norm": 1.370517239734168,
|
175 |
+
"learning_rate": 4.7586206896551725e-05,
|
176 |
+
"loss": 0.1476,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.13,
|
181 |
+
"grad_norm": 1.7341334563022532,
|
182 |
+
"learning_rate": 4.741379310344828e-05,
|
183 |
+
"loss": 0.1236,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.14,
|
188 |
+
"grad_norm": 1.5994298113068974,
|
189 |
+
"learning_rate": 4.724137931034483e-05,
|
190 |
+
"loss": 0.1161,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.14,
|
195 |
+
"grad_norm": 1.5317433190951963,
|
196 |
+
"learning_rate": 4.7068965517241385e-05,
|
197 |
+
"loss": 0.1035,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.15,
|
202 |
+
"grad_norm": 2.191977732539556,
|
203 |
+
"learning_rate": 4.689655172413793e-05,
|
204 |
+
"loss": 0.1427,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.16,
|
209 |
+
"grad_norm": 1.6038667570691656,
|
210 |
+
"learning_rate": 4.672413793103448e-05,
|
211 |
+
"loss": 0.1225,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.16,
|
216 |
+
"grad_norm": 2.577572731831179,
|
217 |
+
"learning_rate": 4.655172413793104e-05,
|
218 |
+
"loss": 0.1399,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.17,
|
223 |
+
"grad_norm": 1.6199241001441385,
|
224 |
+
"learning_rate": 4.6379310344827586e-05,
|
225 |
+
"loss": 0.1242,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.17,
|
230 |
+
"grad_norm": 2.236577821186196,
|
231 |
+
"learning_rate": 4.6206896551724135e-05,
|
232 |
+
"loss": 0.1656,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.18,
|
237 |
+
"grad_norm": 1.7294690605254757,
|
238 |
+
"learning_rate": 4.603448275862069e-05,
|
239 |
+
"loss": 0.1382,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.18,
|
244 |
+
"grad_norm": 2.196527516378511,
|
245 |
+
"learning_rate": 4.586206896551724e-05,
|
246 |
+
"loss": 0.1257,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.19,
|
251 |
+
"grad_norm": 2.1057444340221463,
|
252 |
+
"learning_rate": 4.5689655172413794e-05,
|
253 |
+
"loss": 0.1238,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.19,
|
258 |
+
"grad_norm": 1.5409556870328274,
|
259 |
+
"learning_rate": 4.551724137931035e-05,
|
260 |
+
"loss": 0.1383,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.2,
|
265 |
+
"grad_norm": 1.5204083616874053,
|
266 |
+
"learning_rate": 4.53448275862069e-05,
|
267 |
+
"loss": 0.1068,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.2,
|
272 |
+
"grad_norm": 2.3557725298931746,
|
273 |
+
"learning_rate": 4.5172413793103454e-05,
|
274 |
+
"loss": 0.1071,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.21,
|
279 |
+
"grad_norm": 3.2601538460418644,
|
280 |
+
"learning_rate": 4.5e-05,
|
281 |
+
"loss": 0.125,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.21,
|
286 |
+
"grad_norm": 1.9031725385762286,
|
287 |
+
"learning_rate": 4.482758620689655e-05,
|
288 |
+
"loss": 0.0991,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.22,
|
293 |
+
"grad_norm": 1.3946050262183123,
|
294 |
+
"learning_rate": 4.465517241379311e-05,
|
295 |
+
"loss": 0.1156,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.22,
|
300 |
+
"grad_norm": 1.097644875106397,
|
301 |
+
"learning_rate": 4.4482758620689656e-05,
|
302 |
+
"loss": 0.1366,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.23,
|
307 |
+
"grad_norm": 1.37846299019108,
|
308 |
+
"learning_rate": 4.431034482758621e-05,
|
309 |
+
"loss": 0.126,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.24,
|
314 |
+
"grad_norm": 1.8340152889320331,
|
315 |
+
"learning_rate": 4.413793103448276e-05,
|
316 |
+
"loss": 0.1066,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.24,
|
321 |
+
"grad_norm": 1.8304505611337867,
|
322 |
+
"learning_rate": 4.396551724137931e-05,
|
323 |
+
"loss": 0.0868,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.25,
|
328 |
+
"grad_norm": 1.550196490898523,
|
329 |
+
"learning_rate": 4.3793103448275864e-05,
|
330 |
+
"loss": 0.1286,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.25,
|
335 |
+
"grad_norm": 2.176112247796248,
|
336 |
+
"learning_rate": 4.362068965517241e-05,
|
337 |
+
"loss": 0.1206,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.26,
|
342 |
+
"grad_norm": 1.6589263894091213,
|
343 |
+
"learning_rate": 4.344827586206897e-05,
|
344 |
+
"loss": 0.1008,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.26,
|
349 |
+
"grad_norm": 1.8349611508902046,
|
350 |
+
"learning_rate": 4.327586206896552e-05,
|
351 |
+
"loss": 0.1198,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.27,
|
356 |
+
"grad_norm": 2.1218964920724126,
|
357 |
+
"learning_rate": 4.3103448275862066e-05,
|
358 |
+
"loss": 0.1166,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.27,
|
363 |
+
"eval_loss": 0.6078919172286987,
|
364 |
+
"eval_runtime": 116.8471,
|
365 |
+
"eval_samples_per_second": 11.288,
|
366 |
+
"eval_steps_per_second": 2.824,
|
367 |
+
"step": 500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.27,
|
371 |
+
"grad_norm": 2.5775141311007856,
|
372 |
+
"learning_rate": 4.293103448275863e-05,
|
373 |
+
"loss": 0.1124,
|
374 |
+
"step": 510
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.28,
|
378 |
+
"grad_norm": 1.6019517017800202,
|
379 |
+
"learning_rate": 4.275862068965518e-05,
|
380 |
+
"loss": 0.1068,
|
381 |
+
"step": 520
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.28,
|
385 |
+
"grad_norm": 2.6901962755310205,
|
386 |
+
"learning_rate": 4.2586206896551725e-05,
|
387 |
+
"loss": 0.1286,
|
388 |
+
"step": 530
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.29,
|
392 |
+
"grad_norm": 3.9517995356721767,
|
393 |
+
"learning_rate": 4.241379310344828e-05,
|
394 |
+
"loss": 0.1149,
|
395 |
+
"step": 540
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.29,
|
399 |
+
"grad_norm": 2.0428896228074076,
|
400 |
+
"learning_rate": 4.224137931034483e-05,
|
401 |
+
"loss": 0.141,
|
402 |
+
"step": 550
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.3,
|
406 |
+
"grad_norm": 2.263258592133553,
|
407 |
+
"learning_rate": 4.2068965517241385e-05,
|
408 |
+
"loss": 0.0949,
|
409 |
+
"step": 560
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.3,
|
413 |
+
"grad_norm": 1.4823165953974604,
|
414 |
+
"learning_rate": 4.1896551724137934e-05,
|
415 |
+
"loss": 0.1365,
|
416 |
+
"step": 570
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.31,
|
420 |
+
"grad_norm": 1.4441377020989878,
|
421 |
+
"learning_rate": 4.172413793103448e-05,
|
422 |
+
"loss": 0.1015,
|
423 |
+
"step": 580
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.32,
|
427 |
+
"grad_norm": 1.4779059254436886,
|
428 |
+
"learning_rate": 4.155172413793104e-05,
|
429 |
+
"loss": 0.0988,
|
430 |
+
"step": 590
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.32,
|
434 |
+
"grad_norm": 1.7777823671018818,
|
435 |
+
"learning_rate": 4.1379310344827587e-05,
|
436 |
+
"loss": 0.1124,
|
437 |
+
"step": 600
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.33,
|
441 |
+
"grad_norm": 1.737579831138191,
|
442 |
+
"learning_rate": 4.120689655172414e-05,
|
443 |
+
"loss": 0.086,
|
444 |
+
"step": 610
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.33,
|
448 |
+
"grad_norm": 2.708453961232997,
|
449 |
+
"learning_rate": 4.103448275862069e-05,
|
450 |
+
"loss": 0.0933,
|
451 |
+
"step": 620
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.34,
|
455 |
+
"grad_norm": 1.8871805824236731,
|
456 |
+
"learning_rate": 4.086206896551724e-05,
|
457 |
+
"loss": 0.1407,
|
458 |
+
"step": 630
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.34,
|
462 |
+
"grad_norm": 1.7300112722427339,
|
463 |
+
"learning_rate": 4.0689655172413795e-05,
|
464 |
+
"loss": 0.1224,
|
465 |
+
"step": 640
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.35,
|
469 |
+
"grad_norm": 1.4631236252240614,
|
470 |
+
"learning_rate": 4.0517241379310344e-05,
|
471 |
+
"loss": 0.1014,
|
472 |
+
"step": 650
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.35,
|
476 |
+
"grad_norm": 1.2602431597419264,
|
477 |
+
"learning_rate": 4.03448275862069e-05,
|
478 |
+
"loss": 0.1583,
|
479 |
+
"step": 660
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.36,
|
483 |
+
"grad_norm": 1.2077937041919453,
|
484 |
+
"learning_rate": 4.0172413793103455e-05,
|
485 |
+
"loss": 0.1209,
|
486 |
+
"step": 670
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.36,
|
490 |
+
"grad_norm": 1.4386184566429954,
|
491 |
+
"learning_rate": 4e-05,
|
492 |
+
"loss": 0.1016,
|
493 |
+
"step": 680
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.37,
|
497 |
+
"grad_norm": 2.6160358835758584,
|
498 |
+
"learning_rate": 3.982758620689656e-05,
|
499 |
+
"loss": 0.1062,
|
500 |
+
"step": 690
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.37,
|
504 |
+
"grad_norm": 1.9278794640498955,
|
505 |
+
"learning_rate": 3.965517241379311e-05,
|
506 |
+
"loss": 0.1037,
|
507 |
+
"step": 700
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.38,
|
511 |
+
"grad_norm": 1.2872571900237024,
|
512 |
+
"learning_rate": 3.9482758620689656e-05,
|
513 |
+
"loss": 0.096,
|
514 |
+
"step": 710
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.39,
|
518 |
+
"grad_norm": 1.243554309347296,
|
519 |
+
"learning_rate": 3.931034482758621e-05,
|
520 |
+
"loss": 0.1084,
|
521 |
+
"step": 720
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.39,
|
525 |
+
"grad_norm": 1.5090589714253309,
|
526 |
+
"learning_rate": 3.913793103448276e-05,
|
527 |
+
"loss": 0.0877,
|
528 |
+
"step": 730
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.4,
|
532 |
+
"grad_norm": 2.1419550623025168,
|
533 |
+
"learning_rate": 3.896551724137931e-05,
|
534 |
+
"loss": 0.0994,
|
535 |
+
"step": 740
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.4,
|
539 |
+
"grad_norm": 1.7807417973632438,
|
540 |
+
"learning_rate": 3.8793103448275865e-05,
|
541 |
+
"loss": 0.1029,
|
542 |
+
"step": 750
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.41,
|
546 |
+
"grad_norm": 1.3342960263057682,
|
547 |
+
"learning_rate": 3.862068965517241e-05,
|
548 |
+
"loss": 0.1072,
|
549 |
+
"step": 760
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.41,
|
553 |
+
"grad_norm": 2.3865282340158136,
|
554 |
+
"learning_rate": 3.844827586206897e-05,
|
555 |
+
"loss": 0.1193,
|
556 |
+
"step": 770
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.42,
|
560 |
+
"grad_norm": 1.5428742248459941,
|
561 |
+
"learning_rate": 3.827586206896552e-05,
|
562 |
+
"loss": 0.1156,
|
563 |
+
"step": 780
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.42,
|
567 |
+
"grad_norm": 1.7660532115509044,
|
568 |
+
"learning_rate": 3.8103448275862066e-05,
|
569 |
+
"loss": 0.122,
|
570 |
+
"step": 790
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.43,
|
574 |
+
"grad_norm": 1.8149742752994733,
|
575 |
+
"learning_rate": 3.793103448275862e-05,
|
576 |
+
"loss": 0.1346,
|
577 |
+
"step": 800
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.43,
|
581 |
+
"grad_norm": 1.7456408876472995,
|
582 |
+
"learning_rate": 3.775862068965517e-05,
|
583 |
+
"loss": 0.1223,
|
584 |
+
"step": 810
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.44,
|
588 |
+
"grad_norm": 1.10163248244056,
|
589 |
+
"learning_rate": 3.7586206896551726e-05,
|
590 |
+
"loss": 0.1031,
|
591 |
+
"step": 820
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.44,
|
595 |
+
"grad_norm": 1.6441057737088702,
|
596 |
+
"learning_rate": 3.741379310344828e-05,
|
597 |
+
"loss": 0.1059,
|
598 |
+
"step": 830
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.45,
|
602 |
+
"grad_norm": 2.3999279790163484,
|
603 |
+
"learning_rate": 3.724137931034483e-05,
|
604 |
+
"loss": 0.1125,
|
605 |
+
"step": 840
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.45,
|
609 |
+
"grad_norm": 2.2081477934156903,
|
610 |
+
"learning_rate": 3.7068965517241385e-05,
|
611 |
+
"loss": 0.1266,
|
612 |
+
"step": 850
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.46,
|
616 |
+
"grad_norm": 2.366783771480017,
|
617 |
+
"learning_rate": 3.6896551724137934e-05,
|
618 |
+
"loss": 0.1127,
|
619 |
+
"step": 860
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.47,
|
623 |
+
"grad_norm": 1.3077873674136173,
|
624 |
+
"learning_rate": 3.672413793103448e-05,
|
625 |
+
"loss": 0.1095,
|
626 |
+
"step": 870
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.47,
|
630 |
+
"grad_norm": 1.8197812508114701,
|
631 |
+
"learning_rate": 3.655172413793104e-05,
|
632 |
+
"loss": 0.0932,
|
633 |
+
"step": 880
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.48,
|
637 |
+
"grad_norm": 1.0806192057981219,
|
638 |
+
"learning_rate": 3.637931034482759e-05,
|
639 |
+
"loss": 0.1166,
|
640 |
+
"step": 890
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.48,
|
644 |
+
"grad_norm": 1.520666439337001,
|
645 |
+
"learning_rate": 3.620689655172414e-05,
|
646 |
+
"loss": 0.0883,
|
647 |
+
"step": 900
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.49,
|
651 |
+
"grad_norm": 1.690002270629302,
|
652 |
+
"learning_rate": 3.603448275862069e-05,
|
653 |
+
"loss": 0.1199,
|
654 |
+
"step": 910
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.49,
|
658 |
+
"grad_norm": 1.4319374130118003,
|
659 |
+
"learning_rate": 3.586206896551724e-05,
|
660 |
+
"loss": 0.0991,
|
661 |
+
"step": 920
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.5,
|
665 |
+
"grad_norm": 1.0626084369653164,
|
666 |
+
"learning_rate": 3.5689655172413795e-05,
|
667 |
+
"loss": 0.0923,
|
668 |
+
"step": 930
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.5,
|
672 |
+
"grad_norm": 2.0848060597460902,
|
673 |
+
"learning_rate": 3.5517241379310344e-05,
|
674 |
+
"loss": 0.0979,
|
675 |
+
"step": 940
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.51,
|
679 |
+
"grad_norm": 1.4997189461483256,
|
680 |
+
"learning_rate": 3.53448275862069e-05,
|
681 |
+
"loss": 0.0949,
|
682 |
+
"step": 950
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.51,
|
686 |
+
"grad_norm": 1.7887817042743388,
|
687 |
+
"learning_rate": 3.517241379310345e-05,
|
688 |
+
"loss": 0.1135,
|
689 |
+
"step": 960
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.52,
|
693 |
+
"grad_norm": 3.242965692388458,
|
694 |
+
"learning_rate": 3.5e-05,
|
695 |
+
"loss": 0.1315,
|
696 |
+
"step": 970
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.52,
|
700 |
+
"grad_norm": 1.5034762176322083,
|
701 |
+
"learning_rate": 3.482758620689655e-05,
|
702 |
+
"loss": 0.1177,
|
703 |
+
"step": 980
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.53,
|
707 |
+
"grad_norm": 1.6679474444200848,
|
708 |
+
"learning_rate": 3.465517241379311e-05,
|
709 |
+
"loss": 0.1182,
|
710 |
+
"step": 990
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.54,
|
714 |
+
"grad_norm": 2.814574507251776,
|
715 |
+
"learning_rate": 3.4482758620689657e-05,
|
716 |
+
"loss": 0.0912,
|
717 |
+
"step": 1000
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.54,
|
721 |
+
"eval_loss": 0.6101276874542236,
|
722 |
+
"eval_runtime": 113.9995,
|
723 |
+
"eval_samples_per_second": 11.57,
|
724 |
+
"eval_steps_per_second": 2.895,
|
725 |
+
"step": 1000
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.54,
|
729 |
+
"grad_norm": 2.1321319681580535,
|
730 |
+
"learning_rate": 3.431034482758621e-05,
|
731 |
+
"loss": 0.0983,
|
732 |
+
"step": 1010
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.55,
|
736 |
+
"grad_norm": 1.8915101367452352,
|
737 |
+
"learning_rate": 3.413793103448276e-05,
|
738 |
+
"loss": 0.1113,
|
739 |
+
"step": 1020
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.55,
|
743 |
+
"grad_norm": 1.4160985095468477,
|
744 |
+
"learning_rate": 3.3965517241379316e-05,
|
745 |
+
"loss": 0.1076,
|
746 |
+
"step": 1030
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.56,
|
750 |
+
"grad_norm": 1.8562788974878586,
|
751 |
+
"learning_rate": 3.3793103448275865e-05,
|
752 |
+
"loss": 0.1011,
|
753 |
+
"step": 1040
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.56,
|
757 |
+
"grad_norm": 1.3793192563691294,
|
758 |
+
"learning_rate": 3.3620689655172414e-05,
|
759 |
+
"loss": 0.0978,
|
760 |
+
"step": 1050
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.57,
|
764 |
+
"grad_norm": 1.4606563129628805,
|
765 |
+
"learning_rate": 3.344827586206897e-05,
|
766 |
+
"loss": 0.1069,
|
767 |
+
"step": 1060
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.57,
|
771 |
+
"grad_norm": 1.5680856211032999,
|
772 |
+
"learning_rate": 3.327586206896552e-05,
|
773 |
+
"loss": 0.0988,
|
774 |
+
"step": 1070
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.58,
|
778 |
+
"grad_norm": 1.5829345931951275,
|
779 |
+
"learning_rate": 3.310344827586207e-05,
|
780 |
+
"loss": 0.1256,
|
781 |
+
"step": 1080
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.58,
|
785 |
+
"grad_norm": 1.6200852939319585,
|
786 |
+
"learning_rate": 3.293103448275862e-05,
|
787 |
+
"loss": 0.097,
|
788 |
+
"step": 1090
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.59,
|
792 |
+
"grad_norm": 2.259656836213122,
|
793 |
+
"learning_rate": 3.275862068965517e-05,
|
794 |
+
"loss": 0.1137,
|
795 |
+
"step": 1100
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.59,
|
799 |
+
"grad_norm": 2.2483622341560645,
|
800 |
+
"learning_rate": 3.2586206896551726e-05,
|
801 |
+
"loss": 0.0999,
|
802 |
+
"step": 1110
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.6,
|
806 |
+
"grad_norm": 1.168198861956421,
|
807 |
+
"learning_rate": 3.2413793103448275e-05,
|
808 |
+
"loss": 0.1018,
|
809 |
+
"step": 1120
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.6,
|
813 |
+
"grad_norm": 2.4699824799031482,
|
814 |
+
"learning_rate": 3.2241379310344824e-05,
|
815 |
+
"loss": 0.1132,
|
816 |
+
"step": 1130
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.61,
|
820 |
+
"grad_norm": 1.2571654549549751,
|
821 |
+
"learning_rate": 3.206896551724138e-05,
|
822 |
+
"loss": 0.1054,
|
823 |
+
"step": 1140
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.62,
|
827 |
+
"grad_norm": 0.5559534032307631,
|
828 |
+
"learning_rate": 3.1896551724137935e-05,
|
829 |
+
"loss": 0.0789,
|
830 |
+
"step": 1150
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.62,
|
834 |
+
"grad_norm": 1.636369759504475,
|
835 |
+
"learning_rate": 3.172413793103448e-05,
|
836 |
+
"loss": 0.0902,
|
837 |
+
"step": 1160
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.63,
|
841 |
+
"grad_norm": 1.6137142935446496,
|
842 |
+
"learning_rate": 3.155172413793104e-05,
|
843 |
+
"loss": 0.1199,
|
844 |
+
"step": 1170
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.63,
|
848 |
+
"grad_norm": 1.7448003760796802,
|
849 |
+
"learning_rate": 3.137931034482759e-05,
|
850 |
+
"loss": 0.1295,
|
851 |
+
"step": 1180
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.64,
|
855 |
+
"grad_norm": 1.3261005358227276,
|
856 |
+
"learning_rate": 3.120689655172414e-05,
|
857 |
+
"loss": 0.1117,
|
858 |
+
"step": 1190
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.64,
|
862 |
+
"grad_norm": 1.7353127177901462,
|
863 |
+
"learning_rate": 3.103448275862069e-05,
|
864 |
+
"loss": 0.0951,
|
865 |
+
"step": 1200
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.65,
|
869 |
+
"grad_norm": 2.8569975913367074,
|
870 |
+
"learning_rate": 3.086206896551724e-05,
|
871 |
+
"loss": 0.112,
|
872 |
+
"step": 1210
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.65,
|
876 |
+
"grad_norm": 1.3481947218871082,
|
877 |
+
"learning_rate": 3.0689655172413796e-05,
|
878 |
+
"loss": 0.0876,
|
879 |
+
"step": 1220
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.66,
|
883 |
+
"grad_norm": 2.015933141613929,
|
884 |
+
"learning_rate": 3.0517241379310348e-05,
|
885 |
+
"loss": 0.0993,
|
886 |
+
"step": 1230
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.66,
|
890 |
+
"grad_norm": 1.0588164394448019,
|
891 |
+
"learning_rate": 3.0344827586206897e-05,
|
892 |
+
"loss": 0.1034,
|
893 |
+
"step": 1240
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.67,
|
897 |
+
"grad_norm": 1.3594986645993228,
|
898 |
+
"learning_rate": 3.017241379310345e-05,
|
899 |
+
"loss": 0.1004,
|
900 |
+
"step": 1250
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.67,
|
904 |
+
"grad_norm": 1.333098402625009,
|
905 |
+
"learning_rate": 3e-05,
|
906 |
+
"loss": 0.1259,
|
907 |
+
"step": 1260
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.68,
|
911 |
+
"grad_norm": 1.1324206075196583,
|
912 |
+
"learning_rate": 2.9827586206896553e-05,
|
913 |
+
"loss": 0.1155,
|
914 |
+
"step": 1270
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.68,
|
918 |
+
"grad_norm": 1.2270687927795876,
|
919 |
+
"learning_rate": 2.96551724137931e-05,
|
920 |
+
"loss": 0.092,
|
921 |
+
"step": 1280
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.69,
|
925 |
+
"grad_norm": 1.3085362507403875,
|
926 |
+
"learning_rate": 2.9482758620689654e-05,
|
927 |
+
"loss": 0.1064,
|
928 |
+
"step": 1290
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.7,
|
932 |
+
"grad_norm": 1.7135250277750762,
|
933 |
+
"learning_rate": 2.9310344827586206e-05,
|
934 |
+
"loss": 0.1132,
|
935 |
+
"step": 1300
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.7,
|
939 |
+
"grad_norm": 1.6121189707451158,
|
940 |
+
"learning_rate": 2.913793103448276e-05,
|
941 |
+
"loss": 0.1006,
|
942 |
+
"step": 1310
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.71,
|
946 |
+
"grad_norm": 1.3958680925504208,
|
947 |
+
"learning_rate": 2.8965517241379313e-05,
|
948 |
+
"loss": 0.0956,
|
949 |
+
"step": 1320
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.71,
|
953 |
+
"grad_norm": 1.546226150121884,
|
954 |
+
"learning_rate": 2.8793103448275865e-05,
|
955 |
+
"loss": 0.1142,
|
956 |
+
"step": 1330
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.72,
|
960 |
+
"grad_norm": 2.1837739995965415,
|
961 |
+
"learning_rate": 2.8620689655172417e-05,
|
962 |
+
"loss": 0.1127,
|
963 |
+
"step": 1340
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.72,
|
967 |
+
"grad_norm": 1.9402402206909504,
|
968 |
+
"learning_rate": 2.844827586206897e-05,
|
969 |
+
"loss": 0.0922,
|
970 |
+
"step": 1350
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.73,
|
974 |
+
"grad_norm": 1.7914401953164802,
|
975 |
+
"learning_rate": 2.8275862068965518e-05,
|
976 |
+
"loss": 0.1038,
|
977 |
+
"step": 1360
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.73,
|
981 |
+
"grad_norm": 1.505804090650568,
|
982 |
+
"learning_rate": 2.810344827586207e-05,
|
983 |
+
"loss": 0.1034,
|
984 |
+
"step": 1370
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.74,
|
988 |
+
"grad_norm": 1.9907350713586716,
|
989 |
+
"learning_rate": 2.7931034482758622e-05,
|
990 |
+
"loss": 0.103,
|
991 |
+
"step": 1380
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.74,
|
995 |
+
"grad_norm": 1.6948381773166858,
|
996 |
+
"learning_rate": 2.7758620689655175e-05,
|
997 |
+
"loss": 0.1091,
|
998 |
+
"step": 1390
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.75,
|
1002 |
+
"grad_norm": 1.3995985437024723,
|
1003 |
+
"learning_rate": 2.7586206896551727e-05,
|
1004 |
+
"loss": 0.0852,
|
1005 |
+
"step": 1400
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.75,
|
1009 |
+
"grad_norm": 1.9347024029069393,
|
1010 |
+
"learning_rate": 2.7413793103448275e-05,
|
1011 |
+
"loss": 0.1393,
|
1012 |
+
"step": 1410
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.76,
|
1016 |
+
"grad_norm": 1.608776792445342,
|
1017 |
+
"learning_rate": 2.7241379310344827e-05,
|
1018 |
+
"loss": 0.0951,
|
1019 |
+
"step": 1420
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.77,
|
1023 |
+
"grad_norm": 1.6005483580619249,
|
1024 |
+
"learning_rate": 2.706896551724138e-05,
|
1025 |
+
"loss": 0.1037,
|
1026 |
+
"step": 1430
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.77,
|
1030 |
+
"grad_norm": 2.374208686020403,
|
1031 |
+
"learning_rate": 2.689655172413793e-05,
|
1032 |
+
"loss": 0.0926,
|
1033 |
+
"step": 1440
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.78,
|
1037 |
+
"grad_norm": 1.7554923995400171,
|
1038 |
+
"learning_rate": 2.672413793103448e-05,
|
1039 |
+
"loss": 0.1164,
|
1040 |
+
"step": 1450
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.78,
|
1044 |
+
"grad_norm": 1.2965114220197742,
|
1045 |
+
"learning_rate": 2.6551724137931032e-05,
|
1046 |
+
"loss": 0.1102,
|
1047 |
+
"step": 1460
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.79,
|
1051 |
+
"grad_norm": 1.8857303249108055,
|
1052 |
+
"learning_rate": 2.637931034482759e-05,
|
1053 |
+
"loss": 0.0868,
|
1054 |
+
"step": 1470
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.79,
|
1058 |
+
"grad_norm": 1.406207551120988,
|
1059 |
+
"learning_rate": 2.620689655172414e-05,
|
1060 |
+
"loss": 0.1179,
|
1061 |
+
"step": 1480
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.8,
|
1065 |
+
"grad_norm": 1.275728362064451,
|
1066 |
+
"learning_rate": 2.6034482758620692e-05,
|
1067 |
+
"loss": 0.1128,
|
1068 |
+
"step": 1490
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.8,
|
1072 |
+
"grad_norm": 1.7122434387720797,
|
1073 |
+
"learning_rate": 2.5862068965517244e-05,
|
1074 |
+
"loss": 0.1045,
|
1075 |
+
"step": 1500
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.8,
|
1079 |
+
"eval_loss": 0.6075221300125122,
|
1080 |
+
"eval_runtime": 114.4297,
|
1081 |
+
"eval_samples_per_second": 11.527,
|
1082 |
+
"eval_steps_per_second": 2.884,
|
1083 |
+
"step": 1500
|
1084 |
+
}
|
1085 |
+
],
|
1086 |
+
"logging_steps": 10,
|
1087 |
+
"max_steps": 3000,
|
1088 |
+
"num_input_tokens_seen": 0,
|
1089 |
+
"num_train_epochs": 2,
|
1090 |
+
"save_steps": 500,
|
1091 |
+
"total_flos": 43348525056000.0,
|
1092 |
+
"train_batch_size": 4,
|
1093 |
+
"trial_name": null,
|
1094 |
+
"trial_params": null
|
1095 |
+
}
|
checkpoints/checkpoint-1500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22266252322e6977894297b61731ca9228c8fcfe4e8d788aef270218c40fec98
|
3 |
+
size 6776
|
checkpoints/checkpoint-1500/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/checkpoint-2000/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-2000/adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
checkpoints/checkpoint-2000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1b8d76bd1aed8b1d8412eb6c56e84db43664bebd6ad688ad0950fd8209fc950
|
3 |
+
size 5919456
|
checkpoints/checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dda5a911ff898c12d55662a92778edfd52a8073eea19f9b26697459b3193b10a
|
3 |
+
size 35393392
|
checkpoints/checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e9a98f645b03701444c7e44c6c6a7f0356f803ea2720858c1e66a25b785255d
|
3 |
+
size 183275
|
checkpoints/checkpoint-2000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2000
|
checkpoints/checkpoint-2000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a818498d41465e958bf28c1ed45c89226bd9e0922529cc444009e8907e458b5c
|
3 |
+
size 14244
|
checkpoints/checkpoint-2000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:047852d7b48f1f8dbf5d56d9f5244137e0e2504e7bca2d487065561fcb1ffc15
|
3 |
+
size 1064
|
checkpoints/checkpoint-2000/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoints/checkpoint-2000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/checkpoint-2000/tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": "</s>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|
checkpoints/checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,1453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.070090957731407,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 7.3019086777975994,
|
14 |
+
"learning_rate": 5e-06,
|
15 |
+
"loss": 0.6939,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"grad_norm": 5.150989333266983,
|
21 |
+
"learning_rate": 1e-05,
|
22 |
+
"loss": 0.7167,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.02,
|
27 |
+
"grad_norm": 3.640558809610037,
|
28 |
+
"learning_rate": 1.5e-05,
|
29 |
+
"loss": 0.5683,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.02,
|
34 |
+
"grad_norm": 7.517999397731128,
|
35 |
+
"learning_rate": 2e-05,
|
36 |
+
"loss": 0.5472,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.03,
|
41 |
+
"grad_norm": 1.9687061679463425,
|
42 |
+
"learning_rate": 2.5e-05,
|
43 |
+
"loss": 0.4439,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03,
|
48 |
+
"grad_norm": 3.643479206523606,
|
49 |
+
"learning_rate": 3e-05,
|
50 |
+
"loss": 0.2486,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04,
|
55 |
+
"grad_norm": 2.2754773308695095,
|
56 |
+
"learning_rate": 3.5e-05,
|
57 |
+
"loss": 0.2217,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.04,
|
62 |
+
"grad_norm": 1.7144730049127388,
|
63 |
+
"learning_rate": 4e-05,
|
64 |
+
"loss": 0.169,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.05,
|
69 |
+
"grad_norm": 3.4702829704135114,
|
70 |
+
"learning_rate": 4.5e-05,
|
71 |
+
"loss": 0.1994,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.05,
|
76 |
+
"grad_norm": 1.3985127340985621,
|
77 |
+
"learning_rate": 5e-05,
|
78 |
+
"loss": 0.1612,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.06,
|
83 |
+
"grad_norm": 1.375992184386137,
|
84 |
+
"learning_rate": 4.982758620689655e-05,
|
85 |
+
"loss": 0.1576,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.06,
|
90 |
+
"grad_norm": 1.9528635753013313,
|
91 |
+
"learning_rate": 4.9655172413793107e-05,
|
92 |
+
"loss": 0.1393,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.07,
|
97 |
+
"grad_norm": 4.075169010198401,
|
98 |
+
"learning_rate": 4.9482758620689655e-05,
|
99 |
+
"loss": 0.1969,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.07,
|
104 |
+
"grad_norm": 2.0953991165751207,
|
105 |
+
"learning_rate": 4.931034482758621e-05,
|
106 |
+
"loss": 0.1294,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.08,
|
111 |
+
"grad_norm": 1.942660591044849,
|
112 |
+
"learning_rate": 4.913793103448276e-05,
|
113 |
+
"loss": 0.1306,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.09,
|
118 |
+
"grad_norm": 3.1508904015728345,
|
119 |
+
"learning_rate": 4.896551724137931e-05,
|
120 |
+
"loss": 0.1526,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.09,
|
125 |
+
"grad_norm": 1.9862795165358471,
|
126 |
+
"learning_rate": 4.8793103448275864e-05,
|
127 |
+
"loss": 0.1186,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"grad_norm": 2.633061833817991,
|
133 |
+
"learning_rate": 4.862068965517241e-05,
|
134 |
+
"loss": 0.1457,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.1,
|
139 |
+
"grad_norm": 1.8017052368446178,
|
140 |
+
"learning_rate": 4.844827586206897e-05,
|
141 |
+
"loss": 0.1234,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.11,
|
146 |
+
"grad_norm": 2.1560694100709803,
|
147 |
+
"learning_rate": 4.827586206896552e-05,
|
148 |
+
"loss": 0.1346,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.11,
|
153 |
+
"grad_norm": 1.5737689267430703,
|
154 |
+
"learning_rate": 4.810344827586207e-05,
|
155 |
+
"loss": 0.116,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.12,
|
160 |
+
"grad_norm": 1.957864677854788,
|
161 |
+
"learning_rate": 4.793103448275863e-05,
|
162 |
+
"loss": 0.1692,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.12,
|
167 |
+
"grad_norm": 2.215039223521855,
|
168 |
+
"learning_rate": 4.7758620689655176e-05,
|
169 |
+
"loss": 0.1245,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.13,
|
174 |
+
"grad_norm": 1.370517239734168,
|
175 |
+
"learning_rate": 4.7586206896551725e-05,
|
176 |
+
"loss": 0.1476,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.13,
|
181 |
+
"grad_norm": 1.7341334563022532,
|
182 |
+
"learning_rate": 4.741379310344828e-05,
|
183 |
+
"loss": 0.1236,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.14,
|
188 |
+
"grad_norm": 1.5994298113068974,
|
189 |
+
"learning_rate": 4.724137931034483e-05,
|
190 |
+
"loss": 0.1161,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.14,
|
195 |
+
"grad_norm": 1.5317433190951963,
|
196 |
+
"learning_rate": 4.7068965517241385e-05,
|
197 |
+
"loss": 0.1035,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.15,
|
202 |
+
"grad_norm": 2.191977732539556,
|
203 |
+
"learning_rate": 4.689655172413793e-05,
|
204 |
+
"loss": 0.1427,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.16,
|
209 |
+
"grad_norm": 1.6038667570691656,
|
210 |
+
"learning_rate": 4.672413793103448e-05,
|
211 |
+
"loss": 0.1225,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.16,
|
216 |
+
"grad_norm": 2.577572731831179,
|
217 |
+
"learning_rate": 4.655172413793104e-05,
|
218 |
+
"loss": 0.1399,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.17,
|
223 |
+
"grad_norm": 1.6199241001441385,
|
224 |
+
"learning_rate": 4.6379310344827586e-05,
|
225 |
+
"loss": 0.1242,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.17,
|
230 |
+
"grad_norm": 2.236577821186196,
|
231 |
+
"learning_rate": 4.6206896551724135e-05,
|
232 |
+
"loss": 0.1656,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.18,
|
237 |
+
"grad_norm": 1.7294690605254757,
|
238 |
+
"learning_rate": 4.603448275862069e-05,
|
239 |
+
"loss": 0.1382,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.18,
|
244 |
+
"grad_norm": 2.196527516378511,
|
245 |
+
"learning_rate": 4.586206896551724e-05,
|
246 |
+
"loss": 0.1257,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.19,
|
251 |
+
"grad_norm": 2.1057444340221463,
|
252 |
+
"learning_rate": 4.5689655172413794e-05,
|
253 |
+
"loss": 0.1238,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.19,
|
258 |
+
"grad_norm": 1.5409556870328274,
|
259 |
+
"learning_rate": 4.551724137931035e-05,
|
260 |
+
"loss": 0.1383,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.2,
|
265 |
+
"grad_norm": 1.5204083616874053,
|
266 |
+
"learning_rate": 4.53448275862069e-05,
|
267 |
+
"loss": 0.1068,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.2,
|
272 |
+
"grad_norm": 2.3557725298931746,
|
273 |
+
"learning_rate": 4.5172413793103454e-05,
|
274 |
+
"loss": 0.1071,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.21,
|
279 |
+
"grad_norm": 3.2601538460418644,
|
280 |
+
"learning_rate": 4.5e-05,
|
281 |
+
"loss": 0.125,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.21,
|
286 |
+
"grad_norm": 1.9031725385762286,
|
287 |
+
"learning_rate": 4.482758620689655e-05,
|
288 |
+
"loss": 0.0991,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.22,
|
293 |
+
"grad_norm": 1.3946050262183123,
|
294 |
+
"learning_rate": 4.465517241379311e-05,
|
295 |
+
"loss": 0.1156,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.22,
|
300 |
+
"grad_norm": 1.097644875106397,
|
301 |
+
"learning_rate": 4.4482758620689656e-05,
|
302 |
+
"loss": 0.1366,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.23,
|
307 |
+
"grad_norm": 1.37846299019108,
|
308 |
+
"learning_rate": 4.431034482758621e-05,
|
309 |
+
"loss": 0.126,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.24,
|
314 |
+
"grad_norm": 1.8340152889320331,
|
315 |
+
"learning_rate": 4.413793103448276e-05,
|
316 |
+
"loss": 0.1066,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.24,
|
321 |
+
"grad_norm": 1.8304505611337867,
|
322 |
+
"learning_rate": 4.396551724137931e-05,
|
323 |
+
"loss": 0.0868,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.25,
|
328 |
+
"grad_norm": 1.550196490898523,
|
329 |
+
"learning_rate": 4.3793103448275864e-05,
|
330 |
+
"loss": 0.1286,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.25,
|
335 |
+
"grad_norm": 2.176112247796248,
|
336 |
+
"learning_rate": 4.362068965517241e-05,
|
337 |
+
"loss": 0.1206,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.26,
|
342 |
+
"grad_norm": 1.6589263894091213,
|
343 |
+
"learning_rate": 4.344827586206897e-05,
|
344 |
+
"loss": 0.1008,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.26,
|
349 |
+
"grad_norm": 1.8349611508902046,
|
350 |
+
"learning_rate": 4.327586206896552e-05,
|
351 |
+
"loss": 0.1198,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.27,
|
356 |
+
"grad_norm": 2.1218964920724126,
|
357 |
+
"learning_rate": 4.3103448275862066e-05,
|
358 |
+
"loss": 0.1166,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.27,
|
363 |
+
"eval_loss": 0.6078919172286987,
|
364 |
+
"eval_runtime": 116.8471,
|
365 |
+
"eval_samples_per_second": 11.288,
|
366 |
+
"eval_steps_per_second": 2.824,
|
367 |
+
"step": 500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.27,
|
371 |
+
"grad_norm": 2.5775141311007856,
|
372 |
+
"learning_rate": 4.293103448275863e-05,
|
373 |
+
"loss": 0.1124,
|
374 |
+
"step": 510
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.28,
|
378 |
+
"grad_norm": 1.6019517017800202,
|
379 |
+
"learning_rate": 4.275862068965518e-05,
|
380 |
+
"loss": 0.1068,
|
381 |
+
"step": 520
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.28,
|
385 |
+
"grad_norm": 2.6901962755310205,
|
386 |
+
"learning_rate": 4.2586206896551725e-05,
|
387 |
+
"loss": 0.1286,
|
388 |
+
"step": 530
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.29,
|
392 |
+
"grad_norm": 3.9517995356721767,
|
393 |
+
"learning_rate": 4.241379310344828e-05,
|
394 |
+
"loss": 0.1149,
|
395 |
+
"step": 540
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.29,
|
399 |
+
"grad_norm": 2.0428896228074076,
|
400 |
+
"learning_rate": 4.224137931034483e-05,
|
401 |
+
"loss": 0.141,
|
402 |
+
"step": 550
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.3,
|
406 |
+
"grad_norm": 2.263258592133553,
|
407 |
+
"learning_rate": 4.2068965517241385e-05,
|
408 |
+
"loss": 0.0949,
|
409 |
+
"step": 560
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.3,
|
413 |
+
"grad_norm": 1.4823165953974604,
|
414 |
+
"learning_rate": 4.1896551724137934e-05,
|
415 |
+
"loss": 0.1365,
|
416 |
+
"step": 570
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.31,
|
420 |
+
"grad_norm": 1.4441377020989878,
|
421 |
+
"learning_rate": 4.172413793103448e-05,
|
422 |
+
"loss": 0.1015,
|
423 |
+
"step": 580
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.32,
|
427 |
+
"grad_norm": 1.4779059254436886,
|
428 |
+
"learning_rate": 4.155172413793104e-05,
|
429 |
+
"loss": 0.0988,
|
430 |
+
"step": 590
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.32,
|
434 |
+
"grad_norm": 1.7777823671018818,
|
435 |
+
"learning_rate": 4.1379310344827587e-05,
|
436 |
+
"loss": 0.1124,
|
437 |
+
"step": 600
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.33,
|
441 |
+
"grad_norm": 1.737579831138191,
|
442 |
+
"learning_rate": 4.120689655172414e-05,
|
443 |
+
"loss": 0.086,
|
444 |
+
"step": 610
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.33,
|
448 |
+
"grad_norm": 2.708453961232997,
|
449 |
+
"learning_rate": 4.103448275862069e-05,
|
450 |
+
"loss": 0.0933,
|
451 |
+
"step": 620
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.34,
|
455 |
+
"grad_norm": 1.8871805824236731,
|
456 |
+
"learning_rate": 4.086206896551724e-05,
|
457 |
+
"loss": 0.1407,
|
458 |
+
"step": 630
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.34,
|
462 |
+
"grad_norm": 1.7300112722427339,
|
463 |
+
"learning_rate": 4.0689655172413795e-05,
|
464 |
+
"loss": 0.1224,
|
465 |
+
"step": 640
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.35,
|
469 |
+
"grad_norm": 1.4631236252240614,
|
470 |
+
"learning_rate": 4.0517241379310344e-05,
|
471 |
+
"loss": 0.1014,
|
472 |
+
"step": 650
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.35,
|
476 |
+
"grad_norm": 1.2602431597419264,
|
477 |
+
"learning_rate": 4.03448275862069e-05,
|
478 |
+
"loss": 0.1583,
|
479 |
+
"step": 660
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.36,
|
483 |
+
"grad_norm": 1.2077937041919453,
|
484 |
+
"learning_rate": 4.0172413793103455e-05,
|
485 |
+
"loss": 0.1209,
|
486 |
+
"step": 670
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.36,
|
490 |
+
"grad_norm": 1.4386184566429954,
|
491 |
+
"learning_rate": 4e-05,
|
492 |
+
"loss": 0.1016,
|
493 |
+
"step": 680
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.37,
|
497 |
+
"grad_norm": 2.6160358835758584,
|
498 |
+
"learning_rate": 3.982758620689656e-05,
|
499 |
+
"loss": 0.1062,
|
500 |
+
"step": 690
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.37,
|
504 |
+
"grad_norm": 1.9278794640498955,
|
505 |
+
"learning_rate": 3.965517241379311e-05,
|
506 |
+
"loss": 0.1037,
|
507 |
+
"step": 700
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.38,
|
511 |
+
"grad_norm": 1.2872571900237024,
|
512 |
+
"learning_rate": 3.9482758620689656e-05,
|
513 |
+
"loss": 0.096,
|
514 |
+
"step": 710
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.39,
|
518 |
+
"grad_norm": 1.243554309347296,
|
519 |
+
"learning_rate": 3.931034482758621e-05,
|
520 |
+
"loss": 0.1084,
|
521 |
+
"step": 720
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.39,
|
525 |
+
"grad_norm": 1.5090589714253309,
|
526 |
+
"learning_rate": 3.913793103448276e-05,
|
527 |
+
"loss": 0.0877,
|
528 |
+
"step": 730
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.4,
|
532 |
+
"grad_norm": 2.1419550623025168,
|
533 |
+
"learning_rate": 3.896551724137931e-05,
|
534 |
+
"loss": 0.0994,
|
535 |
+
"step": 740
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.4,
|
539 |
+
"grad_norm": 1.7807417973632438,
|
540 |
+
"learning_rate": 3.8793103448275865e-05,
|
541 |
+
"loss": 0.1029,
|
542 |
+
"step": 750
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.41,
|
546 |
+
"grad_norm": 1.3342960263057682,
|
547 |
+
"learning_rate": 3.862068965517241e-05,
|
548 |
+
"loss": 0.1072,
|
549 |
+
"step": 760
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.41,
|
553 |
+
"grad_norm": 2.3865282340158136,
|
554 |
+
"learning_rate": 3.844827586206897e-05,
|
555 |
+
"loss": 0.1193,
|
556 |
+
"step": 770
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.42,
|
560 |
+
"grad_norm": 1.5428742248459941,
|
561 |
+
"learning_rate": 3.827586206896552e-05,
|
562 |
+
"loss": 0.1156,
|
563 |
+
"step": 780
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.42,
|
567 |
+
"grad_norm": 1.7660532115509044,
|
568 |
+
"learning_rate": 3.8103448275862066e-05,
|
569 |
+
"loss": 0.122,
|
570 |
+
"step": 790
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.43,
|
574 |
+
"grad_norm": 1.8149742752994733,
|
575 |
+
"learning_rate": 3.793103448275862e-05,
|
576 |
+
"loss": 0.1346,
|
577 |
+
"step": 800
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.43,
|
581 |
+
"grad_norm": 1.7456408876472995,
|
582 |
+
"learning_rate": 3.775862068965517e-05,
|
583 |
+
"loss": 0.1223,
|
584 |
+
"step": 810
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.44,
|
588 |
+
"grad_norm": 1.10163248244056,
|
589 |
+
"learning_rate": 3.7586206896551726e-05,
|
590 |
+
"loss": 0.1031,
|
591 |
+
"step": 820
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.44,
|
595 |
+
"grad_norm": 1.6441057737088702,
|
596 |
+
"learning_rate": 3.741379310344828e-05,
|
597 |
+
"loss": 0.1059,
|
598 |
+
"step": 830
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.45,
|
602 |
+
"grad_norm": 2.3999279790163484,
|
603 |
+
"learning_rate": 3.724137931034483e-05,
|
604 |
+
"loss": 0.1125,
|
605 |
+
"step": 840
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.45,
|
609 |
+
"grad_norm": 2.2081477934156903,
|
610 |
+
"learning_rate": 3.7068965517241385e-05,
|
611 |
+
"loss": 0.1266,
|
612 |
+
"step": 850
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.46,
|
616 |
+
"grad_norm": 2.366783771480017,
|
617 |
+
"learning_rate": 3.6896551724137934e-05,
|
618 |
+
"loss": 0.1127,
|
619 |
+
"step": 860
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.47,
|
623 |
+
"grad_norm": 1.3077873674136173,
|
624 |
+
"learning_rate": 3.672413793103448e-05,
|
625 |
+
"loss": 0.1095,
|
626 |
+
"step": 870
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.47,
|
630 |
+
"grad_norm": 1.8197812508114701,
|
631 |
+
"learning_rate": 3.655172413793104e-05,
|
632 |
+
"loss": 0.0932,
|
633 |
+
"step": 880
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.48,
|
637 |
+
"grad_norm": 1.0806192057981219,
|
638 |
+
"learning_rate": 3.637931034482759e-05,
|
639 |
+
"loss": 0.1166,
|
640 |
+
"step": 890
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.48,
|
644 |
+
"grad_norm": 1.520666439337001,
|
645 |
+
"learning_rate": 3.620689655172414e-05,
|
646 |
+
"loss": 0.0883,
|
647 |
+
"step": 900
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.49,
|
651 |
+
"grad_norm": 1.690002270629302,
|
652 |
+
"learning_rate": 3.603448275862069e-05,
|
653 |
+
"loss": 0.1199,
|
654 |
+
"step": 910
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.49,
|
658 |
+
"grad_norm": 1.4319374130118003,
|
659 |
+
"learning_rate": 3.586206896551724e-05,
|
660 |
+
"loss": 0.0991,
|
661 |
+
"step": 920
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.5,
|
665 |
+
"grad_norm": 1.0626084369653164,
|
666 |
+
"learning_rate": 3.5689655172413795e-05,
|
667 |
+
"loss": 0.0923,
|
668 |
+
"step": 930
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.5,
|
672 |
+
"grad_norm": 2.0848060597460902,
|
673 |
+
"learning_rate": 3.5517241379310344e-05,
|
674 |
+
"loss": 0.0979,
|
675 |
+
"step": 940
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.51,
|
679 |
+
"grad_norm": 1.4997189461483256,
|
680 |
+
"learning_rate": 3.53448275862069e-05,
|
681 |
+
"loss": 0.0949,
|
682 |
+
"step": 950
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.51,
|
686 |
+
"grad_norm": 1.7887817042743388,
|
687 |
+
"learning_rate": 3.517241379310345e-05,
|
688 |
+
"loss": 0.1135,
|
689 |
+
"step": 960
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.52,
|
693 |
+
"grad_norm": 3.242965692388458,
|
694 |
+
"learning_rate": 3.5e-05,
|
695 |
+
"loss": 0.1315,
|
696 |
+
"step": 970
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.52,
|
700 |
+
"grad_norm": 1.5034762176322083,
|
701 |
+
"learning_rate": 3.482758620689655e-05,
|
702 |
+
"loss": 0.1177,
|
703 |
+
"step": 980
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.53,
|
707 |
+
"grad_norm": 1.6679474444200848,
|
708 |
+
"learning_rate": 3.465517241379311e-05,
|
709 |
+
"loss": 0.1182,
|
710 |
+
"step": 990
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.54,
|
714 |
+
"grad_norm": 2.814574507251776,
|
715 |
+
"learning_rate": 3.4482758620689657e-05,
|
716 |
+
"loss": 0.0912,
|
717 |
+
"step": 1000
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.54,
|
721 |
+
"eval_loss": 0.6101276874542236,
|
722 |
+
"eval_runtime": 113.9995,
|
723 |
+
"eval_samples_per_second": 11.57,
|
724 |
+
"eval_steps_per_second": 2.895,
|
725 |
+
"step": 1000
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.54,
|
729 |
+
"grad_norm": 2.1321319681580535,
|
730 |
+
"learning_rate": 3.431034482758621e-05,
|
731 |
+
"loss": 0.0983,
|
732 |
+
"step": 1010
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.55,
|
736 |
+
"grad_norm": 1.8915101367452352,
|
737 |
+
"learning_rate": 3.413793103448276e-05,
|
738 |
+
"loss": 0.1113,
|
739 |
+
"step": 1020
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.55,
|
743 |
+
"grad_norm": 1.4160985095468477,
|
744 |
+
"learning_rate": 3.3965517241379316e-05,
|
745 |
+
"loss": 0.1076,
|
746 |
+
"step": 1030
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.56,
|
750 |
+
"grad_norm": 1.8562788974878586,
|
751 |
+
"learning_rate": 3.3793103448275865e-05,
|
752 |
+
"loss": 0.1011,
|
753 |
+
"step": 1040
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.56,
|
757 |
+
"grad_norm": 1.3793192563691294,
|
758 |
+
"learning_rate": 3.3620689655172414e-05,
|
759 |
+
"loss": 0.0978,
|
760 |
+
"step": 1050
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.57,
|
764 |
+
"grad_norm": 1.4606563129628805,
|
765 |
+
"learning_rate": 3.344827586206897e-05,
|
766 |
+
"loss": 0.1069,
|
767 |
+
"step": 1060
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.57,
|
771 |
+
"grad_norm": 1.5680856211032999,
|
772 |
+
"learning_rate": 3.327586206896552e-05,
|
773 |
+
"loss": 0.0988,
|
774 |
+
"step": 1070
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.58,
|
778 |
+
"grad_norm": 1.5829345931951275,
|
779 |
+
"learning_rate": 3.310344827586207e-05,
|
780 |
+
"loss": 0.1256,
|
781 |
+
"step": 1080
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.58,
|
785 |
+
"grad_norm": 1.6200852939319585,
|
786 |
+
"learning_rate": 3.293103448275862e-05,
|
787 |
+
"loss": 0.097,
|
788 |
+
"step": 1090
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.59,
|
792 |
+
"grad_norm": 2.259656836213122,
|
793 |
+
"learning_rate": 3.275862068965517e-05,
|
794 |
+
"loss": 0.1137,
|
795 |
+
"step": 1100
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.59,
|
799 |
+
"grad_norm": 2.2483622341560645,
|
800 |
+
"learning_rate": 3.2586206896551726e-05,
|
801 |
+
"loss": 0.0999,
|
802 |
+
"step": 1110
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.6,
|
806 |
+
"grad_norm": 1.168198861956421,
|
807 |
+
"learning_rate": 3.2413793103448275e-05,
|
808 |
+
"loss": 0.1018,
|
809 |
+
"step": 1120
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.6,
|
813 |
+
"grad_norm": 2.4699824799031482,
|
814 |
+
"learning_rate": 3.2241379310344824e-05,
|
815 |
+
"loss": 0.1132,
|
816 |
+
"step": 1130
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.61,
|
820 |
+
"grad_norm": 1.2571654549549751,
|
821 |
+
"learning_rate": 3.206896551724138e-05,
|
822 |
+
"loss": 0.1054,
|
823 |
+
"step": 1140
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.62,
|
827 |
+
"grad_norm": 0.5559534032307631,
|
828 |
+
"learning_rate": 3.1896551724137935e-05,
|
829 |
+
"loss": 0.0789,
|
830 |
+
"step": 1150
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.62,
|
834 |
+
"grad_norm": 1.636369759504475,
|
835 |
+
"learning_rate": 3.172413793103448e-05,
|
836 |
+
"loss": 0.0902,
|
837 |
+
"step": 1160
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.63,
|
841 |
+
"grad_norm": 1.6137142935446496,
|
842 |
+
"learning_rate": 3.155172413793104e-05,
|
843 |
+
"loss": 0.1199,
|
844 |
+
"step": 1170
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.63,
|
848 |
+
"grad_norm": 1.7448003760796802,
|
849 |
+
"learning_rate": 3.137931034482759e-05,
|
850 |
+
"loss": 0.1295,
|
851 |
+
"step": 1180
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.64,
|
855 |
+
"grad_norm": 1.3261005358227276,
|
856 |
+
"learning_rate": 3.120689655172414e-05,
|
857 |
+
"loss": 0.1117,
|
858 |
+
"step": 1190
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.64,
|
862 |
+
"grad_norm": 1.7353127177901462,
|
863 |
+
"learning_rate": 3.103448275862069e-05,
|
864 |
+
"loss": 0.0951,
|
865 |
+
"step": 1200
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.65,
|
869 |
+
"grad_norm": 2.8569975913367074,
|
870 |
+
"learning_rate": 3.086206896551724e-05,
|
871 |
+
"loss": 0.112,
|
872 |
+
"step": 1210
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.65,
|
876 |
+
"grad_norm": 1.3481947218871082,
|
877 |
+
"learning_rate": 3.0689655172413796e-05,
|
878 |
+
"loss": 0.0876,
|
879 |
+
"step": 1220
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.66,
|
883 |
+
"grad_norm": 2.015933141613929,
|
884 |
+
"learning_rate": 3.0517241379310348e-05,
|
885 |
+
"loss": 0.0993,
|
886 |
+
"step": 1230
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.66,
|
890 |
+
"grad_norm": 1.0588164394448019,
|
891 |
+
"learning_rate": 3.0344827586206897e-05,
|
892 |
+
"loss": 0.1034,
|
893 |
+
"step": 1240
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.67,
|
897 |
+
"grad_norm": 1.3594986645993228,
|
898 |
+
"learning_rate": 3.017241379310345e-05,
|
899 |
+
"loss": 0.1004,
|
900 |
+
"step": 1250
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.67,
|
904 |
+
"grad_norm": 1.333098402625009,
|
905 |
+
"learning_rate": 3e-05,
|
906 |
+
"loss": 0.1259,
|
907 |
+
"step": 1260
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.68,
|
911 |
+
"grad_norm": 1.1324206075196583,
|
912 |
+
"learning_rate": 2.9827586206896553e-05,
|
913 |
+
"loss": 0.1155,
|
914 |
+
"step": 1270
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.68,
|
918 |
+
"grad_norm": 1.2270687927795876,
|
919 |
+
"learning_rate": 2.96551724137931e-05,
|
920 |
+
"loss": 0.092,
|
921 |
+
"step": 1280
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.69,
|
925 |
+
"grad_norm": 1.3085362507403875,
|
926 |
+
"learning_rate": 2.9482758620689654e-05,
|
927 |
+
"loss": 0.1064,
|
928 |
+
"step": 1290
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.7,
|
932 |
+
"grad_norm": 1.7135250277750762,
|
933 |
+
"learning_rate": 2.9310344827586206e-05,
|
934 |
+
"loss": 0.1132,
|
935 |
+
"step": 1300
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.7,
|
939 |
+
"grad_norm": 1.6121189707451158,
|
940 |
+
"learning_rate": 2.913793103448276e-05,
|
941 |
+
"loss": 0.1006,
|
942 |
+
"step": 1310
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.71,
|
946 |
+
"grad_norm": 1.3958680925504208,
|
947 |
+
"learning_rate": 2.8965517241379313e-05,
|
948 |
+
"loss": 0.0956,
|
949 |
+
"step": 1320
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.71,
|
953 |
+
"grad_norm": 1.546226150121884,
|
954 |
+
"learning_rate": 2.8793103448275865e-05,
|
955 |
+
"loss": 0.1142,
|
956 |
+
"step": 1330
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.72,
|
960 |
+
"grad_norm": 2.1837739995965415,
|
961 |
+
"learning_rate": 2.8620689655172417e-05,
|
962 |
+
"loss": 0.1127,
|
963 |
+
"step": 1340
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.72,
|
967 |
+
"grad_norm": 1.9402402206909504,
|
968 |
+
"learning_rate": 2.844827586206897e-05,
|
969 |
+
"loss": 0.0922,
|
970 |
+
"step": 1350
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.73,
|
974 |
+
"grad_norm": 1.7914401953164802,
|
975 |
+
"learning_rate": 2.8275862068965518e-05,
|
976 |
+
"loss": 0.1038,
|
977 |
+
"step": 1360
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.73,
|
981 |
+
"grad_norm": 1.505804090650568,
|
982 |
+
"learning_rate": 2.810344827586207e-05,
|
983 |
+
"loss": 0.1034,
|
984 |
+
"step": 1370
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.74,
|
988 |
+
"grad_norm": 1.9907350713586716,
|
989 |
+
"learning_rate": 2.7931034482758622e-05,
|
990 |
+
"loss": 0.103,
|
991 |
+
"step": 1380
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.74,
|
995 |
+
"grad_norm": 1.6948381773166858,
|
996 |
+
"learning_rate": 2.7758620689655175e-05,
|
997 |
+
"loss": 0.1091,
|
998 |
+
"step": 1390
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.75,
|
1002 |
+
"grad_norm": 1.3995985437024723,
|
1003 |
+
"learning_rate": 2.7586206896551727e-05,
|
1004 |
+
"loss": 0.0852,
|
1005 |
+
"step": 1400
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.75,
|
1009 |
+
"grad_norm": 1.9347024029069393,
|
1010 |
+
"learning_rate": 2.7413793103448275e-05,
|
1011 |
+
"loss": 0.1393,
|
1012 |
+
"step": 1410
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.76,
|
1016 |
+
"grad_norm": 1.608776792445342,
|
1017 |
+
"learning_rate": 2.7241379310344827e-05,
|
1018 |
+
"loss": 0.0951,
|
1019 |
+
"step": 1420
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.77,
|
1023 |
+
"grad_norm": 1.6005483580619249,
|
1024 |
+
"learning_rate": 2.706896551724138e-05,
|
1025 |
+
"loss": 0.1037,
|
1026 |
+
"step": 1430
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.77,
|
1030 |
+
"grad_norm": 2.374208686020403,
|
1031 |
+
"learning_rate": 2.689655172413793e-05,
|
1032 |
+
"loss": 0.0926,
|
1033 |
+
"step": 1440
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.78,
|
1037 |
+
"grad_norm": 1.7554923995400171,
|
1038 |
+
"learning_rate": 2.672413793103448e-05,
|
1039 |
+
"loss": 0.1164,
|
1040 |
+
"step": 1450
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.78,
|
1044 |
+
"grad_norm": 1.2965114220197742,
|
1045 |
+
"learning_rate": 2.6551724137931032e-05,
|
1046 |
+
"loss": 0.1102,
|
1047 |
+
"step": 1460
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.79,
|
1051 |
+
"grad_norm": 1.8857303249108055,
|
1052 |
+
"learning_rate": 2.637931034482759e-05,
|
1053 |
+
"loss": 0.0868,
|
1054 |
+
"step": 1470
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.79,
|
1058 |
+
"grad_norm": 1.406207551120988,
|
1059 |
+
"learning_rate": 2.620689655172414e-05,
|
1060 |
+
"loss": 0.1179,
|
1061 |
+
"step": 1480
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.8,
|
1065 |
+
"grad_norm": 1.275728362064451,
|
1066 |
+
"learning_rate": 2.6034482758620692e-05,
|
1067 |
+
"loss": 0.1128,
|
1068 |
+
"step": 1490
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.8,
|
1072 |
+
"grad_norm": 1.7122434387720797,
|
1073 |
+
"learning_rate": 2.5862068965517244e-05,
|
1074 |
+
"loss": 0.1045,
|
1075 |
+
"step": 1500
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.8,
|
1079 |
+
"eval_loss": 0.6075221300125122,
|
1080 |
+
"eval_runtime": 114.4297,
|
1081 |
+
"eval_samples_per_second": 11.527,
|
1082 |
+
"eval_steps_per_second": 2.884,
|
1083 |
+
"step": 1500
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.81,
|
1087 |
+
"grad_norm": 1.3880467648229133,
|
1088 |
+
"learning_rate": 2.5689655172413796e-05,
|
1089 |
+
"loss": 0.1031,
|
1090 |
+
"step": 1510
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.81,
|
1094 |
+
"grad_norm": 2.3475935500456657,
|
1095 |
+
"learning_rate": 2.551724137931035e-05,
|
1096 |
+
"loss": 0.1064,
|
1097 |
+
"step": 1520
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.82,
|
1101 |
+
"grad_norm": 1.9746447047097486,
|
1102 |
+
"learning_rate": 2.5344827586206897e-05,
|
1103 |
+
"loss": 0.0995,
|
1104 |
+
"step": 1530
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.82,
|
1108 |
+
"grad_norm": 1.2244623226185645,
|
1109 |
+
"learning_rate": 2.517241379310345e-05,
|
1110 |
+
"loss": 0.1044,
|
1111 |
+
"step": 1540
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.83,
|
1115 |
+
"grad_norm": 2.2605012043265216,
|
1116 |
+
"learning_rate": 2.5e-05,
|
1117 |
+
"loss": 0.1017,
|
1118 |
+
"step": 1550
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.83,
|
1122 |
+
"grad_norm": 1.624612730097256,
|
1123 |
+
"learning_rate": 2.4827586206896553e-05,
|
1124 |
+
"loss": 0.0973,
|
1125 |
+
"step": 1560
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.84,
|
1129 |
+
"grad_norm": 1.3648662151461801,
|
1130 |
+
"learning_rate": 2.4655172413793105e-05,
|
1131 |
+
"loss": 0.0836,
|
1132 |
+
"step": 1570
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 0.85,
|
1136 |
+
"grad_norm": 1.4642386177378814,
|
1137 |
+
"learning_rate": 2.4482758620689654e-05,
|
1138 |
+
"loss": 0.1058,
|
1139 |
+
"step": 1580
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.85,
|
1143 |
+
"grad_norm": 1.3057087388796036,
|
1144 |
+
"learning_rate": 2.4310344827586206e-05,
|
1145 |
+
"loss": 0.1092,
|
1146 |
+
"step": 1590
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.86,
|
1150 |
+
"grad_norm": 2.092348689417081,
|
1151 |
+
"learning_rate": 2.413793103448276e-05,
|
1152 |
+
"loss": 0.0958,
|
1153 |
+
"step": 1600
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.86,
|
1157 |
+
"grad_norm": 1.3731115281087607,
|
1158 |
+
"learning_rate": 2.3965517241379314e-05,
|
1159 |
+
"loss": 0.0883,
|
1160 |
+
"step": 1610
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.87,
|
1164 |
+
"grad_norm": 1.3983722722394134,
|
1165 |
+
"learning_rate": 2.3793103448275862e-05,
|
1166 |
+
"loss": 0.0944,
|
1167 |
+
"step": 1620
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.87,
|
1171 |
+
"grad_norm": 2.4163442262002937,
|
1172 |
+
"learning_rate": 2.3620689655172415e-05,
|
1173 |
+
"loss": 0.1062,
|
1174 |
+
"step": 1630
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.88,
|
1178 |
+
"grad_norm": 1.5006079944233688,
|
1179 |
+
"learning_rate": 2.3448275862068967e-05,
|
1180 |
+
"loss": 0.1129,
|
1181 |
+
"step": 1640
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 0.88,
|
1185 |
+
"grad_norm": 1.54283270803711,
|
1186 |
+
"learning_rate": 2.327586206896552e-05,
|
1187 |
+
"loss": 0.0861,
|
1188 |
+
"step": 1650
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.89,
|
1192 |
+
"grad_norm": 2.269678144223195,
|
1193 |
+
"learning_rate": 2.3103448275862067e-05,
|
1194 |
+
"loss": 0.0978,
|
1195 |
+
"step": 1660
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.89,
|
1199 |
+
"grad_norm": 1.8105959776831768,
|
1200 |
+
"learning_rate": 2.293103448275862e-05,
|
1201 |
+
"loss": 0.1141,
|
1202 |
+
"step": 1670
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.9,
|
1206 |
+
"grad_norm": 1.9135579713863027,
|
1207 |
+
"learning_rate": 2.2758620689655175e-05,
|
1208 |
+
"loss": 0.0918,
|
1209 |
+
"step": 1680
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.9,
|
1213 |
+
"grad_norm": 1.6604450253018581,
|
1214 |
+
"learning_rate": 2.2586206896551727e-05,
|
1215 |
+
"loss": 0.096,
|
1216 |
+
"step": 1690
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.91,
|
1220 |
+
"grad_norm": 2.115987565053461,
|
1221 |
+
"learning_rate": 2.2413793103448276e-05,
|
1222 |
+
"loss": 0.1166,
|
1223 |
+
"step": 1700
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.91,
|
1227 |
+
"grad_norm": 1.4279927513160544,
|
1228 |
+
"learning_rate": 2.2241379310344828e-05,
|
1229 |
+
"loss": 0.1052,
|
1230 |
+
"step": 1710
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.92,
|
1234 |
+
"grad_norm": 1.185880441960968,
|
1235 |
+
"learning_rate": 2.206896551724138e-05,
|
1236 |
+
"loss": 0.1053,
|
1237 |
+
"step": 1720
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.93,
|
1241 |
+
"grad_norm": 1.6969029997828415,
|
1242 |
+
"learning_rate": 2.1896551724137932e-05,
|
1243 |
+
"loss": 0.106,
|
1244 |
+
"step": 1730
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.93,
|
1248 |
+
"grad_norm": 2.0330998697970286,
|
1249 |
+
"learning_rate": 2.1724137931034484e-05,
|
1250 |
+
"loss": 0.1073,
|
1251 |
+
"step": 1740
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.94,
|
1255 |
+
"grad_norm": 1.19027851417408,
|
1256 |
+
"learning_rate": 2.1551724137931033e-05,
|
1257 |
+
"loss": 0.091,
|
1258 |
+
"step": 1750
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.94,
|
1262 |
+
"grad_norm": 1.2470713090698218,
|
1263 |
+
"learning_rate": 2.137931034482759e-05,
|
1264 |
+
"loss": 0.0898,
|
1265 |
+
"step": 1760
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.95,
|
1269 |
+
"grad_norm": 2.235740059996042,
|
1270 |
+
"learning_rate": 2.120689655172414e-05,
|
1271 |
+
"loss": 0.1327,
|
1272 |
+
"step": 1770
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.95,
|
1276 |
+
"grad_norm": 1.5741742016710085,
|
1277 |
+
"learning_rate": 2.1034482758620692e-05,
|
1278 |
+
"loss": 0.1126,
|
1279 |
+
"step": 1780
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.96,
|
1283 |
+
"grad_norm": 0.9343547126371113,
|
1284 |
+
"learning_rate": 2.086206896551724e-05,
|
1285 |
+
"loss": 0.0819,
|
1286 |
+
"step": 1790
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.96,
|
1290 |
+
"grad_norm": 2.2764271447338937,
|
1291 |
+
"learning_rate": 2.0689655172413793e-05,
|
1292 |
+
"loss": 0.1204,
|
1293 |
+
"step": 1800
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.97,
|
1297 |
+
"grad_norm": 1.981384842073209,
|
1298 |
+
"learning_rate": 2.0517241379310345e-05,
|
1299 |
+
"loss": 0.1182,
|
1300 |
+
"step": 1810
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.97,
|
1304 |
+
"grad_norm": 1.044063198588911,
|
1305 |
+
"learning_rate": 2.0344827586206897e-05,
|
1306 |
+
"loss": 0.1005,
|
1307 |
+
"step": 1820
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.98,
|
1311 |
+
"grad_norm": 2.370183172473789,
|
1312 |
+
"learning_rate": 2.017241379310345e-05,
|
1313 |
+
"loss": 0.1174,
|
1314 |
+
"step": 1830
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.98,
|
1318 |
+
"grad_norm": 1.9052733799672823,
|
1319 |
+
"learning_rate": 2e-05,
|
1320 |
+
"loss": 0.1125,
|
1321 |
+
"step": 1840
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.99,
|
1325 |
+
"grad_norm": 1.628277530114902,
|
1326 |
+
"learning_rate": 1.9827586206896554e-05,
|
1327 |
+
"loss": 0.1015,
|
1328 |
+
"step": 1850
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.0,
|
1332 |
+
"grad_norm": 1.2522124245986863,
|
1333 |
+
"learning_rate": 1.9655172413793106e-05,
|
1334 |
+
"loss": 0.0924,
|
1335 |
+
"step": 1860
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.0,
|
1339 |
+
"grad_norm": 0.6911426489002421,
|
1340 |
+
"learning_rate": 1.9482758620689655e-05,
|
1341 |
+
"loss": 0.0965,
|
1342 |
+
"step": 1870
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 1.01,
|
1346 |
+
"grad_norm": 1.821890613342771,
|
1347 |
+
"learning_rate": 1.9310344827586207e-05,
|
1348 |
+
"loss": 0.081,
|
1349 |
+
"step": 1880
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 1.01,
|
1353 |
+
"grad_norm": 0.7643588179781782,
|
1354 |
+
"learning_rate": 1.913793103448276e-05,
|
1355 |
+
"loss": 0.0761,
|
1356 |
+
"step": 1890
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 1.02,
|
1360 |
+
"grad_norm": 1.1095002263403428,
|
1361 |
+
"learning_rate": 1.896551724137931e-05,
|
1362 |
+
"loss": 0.0871,
|
1363 |
+
"step": 1900
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 1.02,
|
1367 |
+
"grad_norm": 1.4639820667455608,
|
1368 |
+
"learning_rate": 1.8793103448275863e-05,
|
1369 |
+
"loss": 0.0805,
|
1370 |
+
"step": 1910
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.03,
|
1374 |
+
"grad_norm": 1.6214269161589794,
|
1375 |
+
"learning_rate": 1.8620689655172415e-05,
|
1376 |
+
"loss": 0.0902,
|
1377 |
+
"step": 1920
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.03,
|
1381 |
+
"grad_norm": 1.5979085316952373,
|
1382 |
+
"learning_rate": 1.8448275862068967e-05,
|
1383 |
+
"loss": 0.0967,
|
1384 |
+
"step": 1930
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 1.04,
|
1388 |
+
"grad_norm": 1.2001043976090235,
|
1389 |
+
"learning_rate": 1.827586206896552e-05,
|
1390 |
+
"loss": 0.069,
|
1391 |
+
"step": 1940
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 1.04,
|
1395 |
+
"grad_norm": 2.100190633629739,
|
1396 |
+
"learning_rate": 1.810344827586207e-05,
|
1397 |
+
"loss": 0.1024,
|
1398 |
+
"step": 1950
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 1.05,
|
1402 |
+
"grad_norm": 1.7393396532511867,
|
1403 |
+
"learning_rate": 1.793103448275862e-05,
|
1404 |
+
"loss": 0.0728,
|
1405 |
+
"step": 1960
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 1.05,
|
1409 |
+
"grad_norm": 1.873599965711283,
|
1410 |
+
"learning_rate": 1.7758620689655172e-05,
|
1411 |
+
"loss": 0.0735,
|
1412 |
+
"step": 1970
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.06,
|
1416 |
+
"grad_norm": 1.4460752726376342,
|
1417 |
+
"learning_rate": 1.7586206896551724e-05,
|
1418 |
+
"loss": 0.1,
|
1419 |
+
"step": 1980
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.06,
|
1423 |
+
"grad_norm": 0.8772715867399261,
|
1424 |
+
"learning_rate": 1.7413793103448276e-05,
|
1425 |
+
"loss": 0.0794,
|
1426 |
+
"step": 1990
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 1.07,
|
1430 |
+
"grad_norm": 1.398173054729605,
|
1431 |
+
"learning_rate": 1.7241379310344828e-05,
|
1432 |
+
"loss": 0.078,
|
1433 |
+
"step": 2000
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 1.07,
|
1437 |
+
"eval_loss": 0.6523420810699463,
|
1438 |
+
"eval_runtime": 115.4048,
|
1439 |
+
"eval_samples_per_second": 11.429,
|
1440 |
+
"eval_steps_per_second": 2.859,
|
1441 |
+
"step": 2000
|
1442 |
+
}
|
1443 |
+
],
|
1444 |
+
"logging_steps": 10,
|
1445 |
+
"max_steps": 3000,
|
1446 |
+
"num_input_tokens_seen": 0,
|
1447 |
+
"num_train_epochs": 2,
|
1448 |
+
"save_steps": 500,
|
1449 |
+
"total_flos": 57776359145472.0,
|
1450 |
+
"train_batch_size": 4,
|
1451 |
+
"trial_name": null,
|
1452 |
+
"trial_params": null
|
1453 |
+
}
|
checkpoints/checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22266252322e6977894297b61731ca9228c8fcfe4e8d788aef270218c40fec98
|
3 |
+
size 6776
|
checkpoints/checkpoint-2000/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoints/checkpoint-2500/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoints/checkpoint-2500/adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "openbmb/MiniCPM-2B-dpo-bf16",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
checkpoints/checkpoint-2500/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3930f22046333bd2b424020c5ba937de3e5f3239dc86cbd432b2b9f92c95a70a
|
3 |
+
size 5919456
|
checkpoints/checkpoint-2500/global_step2500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e4efdd5c2b93b0c2c7671ca8a30ba480832bf7ecbcc638e1f13267ac9c26e5d
|
3 |
+
size 35393392
|