File size: 2,252 Bytes
250338d 02923ef 250338d 1173ca5 250338d e4781be 5e58cda e4781be 92dcab5 250338d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: cc0-1.0
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bluebert_pubmed_mimic_uncased_squadv2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bluebert_pubmed_mimic_uncased_squadv2
This model is a fine-tuned version of [bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) on the squad_v2 dataset.
## Intended uses & limitations
This is the first model on huggingface that combines [MIMIC data](https://mimic.mit.edu/) with [squadv2](https://huggingface.co/datasets/squad_v2) for question answering purposes.
## Training and evaluation data
Takes the pretrained model [bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) and fine-tunes and evaluates on [squad_v2](https://huggingface.co/datasets/squad_v2) data.
## Training procedure
Tuning script used (.bat file):
```python
@echo off
set BASE_MODEL=bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
set OUTPUT_DIR=U:\Documents\Breast_Non_Synoptic\results\pretrained\bluebert_pubmed_mimic_uncased_squadv2\
python run_qa.py ^
--model_name_or_path %BASE_MODEL% ^
--dataset_name squad_v2 ^
--do_train ^
--do_eval ^
--version_2_with_negative ^
--per_device_train_batch_size 16 ^
--learning_rate 2e-5 ^
--num_train_epochs 3 ^
--max_seq_length 480 ^
--doc_stride 64 ^
--weight_decay 0.01 ^
--output_dir %OUTPUT_DIR%
```
You may need to adapt this script for non-Windows operating systems.
The run_qa.py example script can be found [here](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa.py).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.2
|