--- license: cc0-1.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bluebert_pubmed_mimic_uncased_squadv2 results: [] --- # bluebert_pubmed_mimic_uncased_squadv2 This model is a fine-tuned version of [bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) on the squad_v2 dataset. ## Intended uses & limitations This is the first model on huggingface that combines MIMIC data (https://mimic.mit.edu/) with squadv2 (https://huggingface.co/datasets/squad_v2) for question answering purposes. ## Training and evaluation data - Takes a pretrained model (https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) and fine-tunes and evaluates on squad_v2 data. ## Training procedure Tuning script used (.bat file): ```python @echo off set BASE_MODEL=bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12 set OUTPUT_DIR=U:\Documents\Breast_Non_Synoptic\results\pretrained\bluebert_pubmed_mimic_uncased_squadv2\ python run_qa.py ^ --model_name_or_path %BASE_MODEL% ^ --dataset_name squad_v2 ^ --do_train ^ --do_eval ^ --version_2_with_negative ^ --per_device_train_batch_size 16 ^ --learning_rate 2e-5 ^ --num_train_epochs 3 ^ --max_seq_length 480 ^ --doc_stride 64 ^ --weight_decay 0.01 ^ --output_dir %OUTPUT_DIR% ``` You may need to adapt this script for non-Windows operating systems. The run_qa.py example script can be found [here](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa.py). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.2