File size: 3,832 Bytes
e996761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: NlpHUST/ner-vietnamese-electra-base
tags:
- generated_from_trainer
model-index:
- name: ner-education-hcmut
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ner-education-hcmut

This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0681
- Location: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7}
- Miscellaneous: {'precision': 0.6911764705882353, 'recall': 0.7230769230769231, 'f1': 0.7067669172932332, 'number': 65}
- Organization: {'precision': 0.4166666666666667, 'recall': 0.5, 'f1': 0.45454545454545453, 'number': 10}
- Person: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Overall Precision: 0.6190
- Overall Recall: 0.6118
- Overall F1: 0.6154
- Overall Accuracy: 0.9851

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Location                                                  | Miscellaneous                                                                                            | Organization                                                                              | Person                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log        | 1.0   | 207  | 0.0705          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.49333333333333335, 'recall': 0.5692307692307692, 'f1': 0.5285714285714285, 'number': 65} | {'precision': 0.36363636363636365, 'recall': 0.4, 'f1': 0.380952380952381, 'number': 10}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | 0.4556            | 0.4824         | 0.4686     | 0.9806           |
| No log        | 2.0   | 414  | 0.0672          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.6133333333333333, 'recall': 0.7076923076923077, 'f1': 0.657142857142857, 'number': 65}   | {'precision': 0.4666666666666667, 'recall': 0.7, 'f1': 0.56, 'number': 10}                | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | 0.5638            | 0.6235         | 0.5922     | 0.9838           |
| 0.0564        | 3.0   | 621  | 0.0681          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.6911764705882353, 'recall': 0.7230769230769231, 'f1': 0.7067669172932332, 'number': 65}  | {'precision': 0.4166666666666667, 'recall': 0.5, 'f1': 0.45454545454545453, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | 0.6190            | 0.6118         | 0.6154     | 0.9851           |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1