File size: 3,832 Bytes
e996761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
base_model: NlpHUST/ner-vietnamese-electra-base
tags:
- generated_from_trainer
model-index:
- name: ner-education-hcmut
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner-education-hcmut
This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0681
- Location: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7}
- Miscellaneous: {'precision': 0.6911764705882353, 'recall': 0.7230769230769231, 'f1': 0.7067669172932332, 'number': 65}
- Organization: {'precision': 0.4166666666666667, 'recall': 0.5, 'f1': 0.45454545454545453, 'number': 10}
- Person: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Overall Precision: 0.6190
- Overall Recall: 0.6118
- Overall F1: 0.6154
- Overall Accuracy: 0.9851
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Location | Miscellaneous | Organization | Person | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log | 1.0 | 207 | 0.0705 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.49333333333333335, 'recall': 0.5692307692307692, 'f1': 0.5285714285714285, 'number': 65} | {'precision': 0.36363636363636365, 'recall': 0.4, 'f1': 0.380952380952381, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | 0.4556 | 0.4824 | 0.4686 | 0.9806 |
| No log | 2.0 | 414 | 0.0672 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.6133333333333333, 'recall': 0.7076923076923077, 'f1': 0.657142857142857, 'number': 65} | {'precision': 0.4666666666666667, 'recall': 0.7, 'f1': 0.56, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | 0.5638 | 0.6235 | 0.5922 | 0.9838 |
| 0.0564 | 3.0 | 621 | 0.0681 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.6911764705882353, 'recall': 0.7230769230769231, 'f1': 0.7067669172932332, 'number': 65} | {'precision': 0.4166666666666667, 'recall': 0.5, 'f1': 0.45454545454545453, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | 0.6190 | 0.6118 | 0.6154 | 0.9851 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|