--- base_model: NlpHUST/ner-vietnamese-electra-base tags: - generated_from_trainer model-index: - name: ner-education-hcmut results: [] --- # ner-education-hcmut This model is a fine-tuned version of [NlpHUST/ner-vietnamese-electra-base](https://huggingface.co/NlpHUST/ner-vietnamese-electra-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1569 - Location: {'precision': 0.8888888888888888, 'recall': 0.6153846153846154, 'f1': 0.7272727272727274, 'number': 13} - Miscellaneous: {'precision': 0.6255506607929515, 'recall': 0.7029702970297029, 'f1': 0.662004662004662, 'number': 202} - Organization: {'precision': 0.723404255319149, 'recall': 0.7906976744186046, 'f1': 0.7555555555555555, 'number': 43} - Person: {'precision': 0.3157894736842105, 'recall': 0.3157894736842105, 'f1': 0.3157894736842105, 'number': 19} - Overall Precision: 0.6291 - Overall Recall: 0.6859 - Overall F1: 0.6563 - Overall Accuracy: 0.9587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Location | Miscellaneous | Organization | Person | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | No log | 1.0 | 220 | 0.1317 | {'precision': 0.6666666666666666, 'recall': 0.46153846153846156, 'f1': 0.5454545454545455, 'number': 13} | {'precision': 0.5213675213675214, 'recall': 0.6039603960396039, 'f1': 0.5596330275229358, 'number': 202} | {'precision': 0.38028169014084506, 'recall': 0.627906976744186, 'f1': 0.4736842105263158, 'number': 43} | {'precision': 0.23809523809523808, 'recall': 0.2631578947368421, 'f1': 0.25, 'number': 19} | 0.4776 | 0.5776 | 0.5229 | 0.9504 | | No log | 2.0 | 440 | 0.1513 | {'precision': 0.6, 'recall': 0.46153846153846156, 'f1': 0.5217391304347826, 'number': 13} | {'precision': 0.6008403361344538, 'recall': 0.7079207920792079, 'f1': 0.65, 'number': 202} | {'precision': 0.6538461538461539, 'recall': 0.7906976744186046, 'f1': 0.7157894736842104, 'number': 43} | {'precision': 0.3333333333333333, 'recall': 0.3157894736842105, 'f1': 0.3243243243243243, 'number': 19} | 0.5943 | 0.6823 | 0.6353 | 0.9564 | | 0.1164 | 3.0 | 660 | 0.1569 | {'precision': 0.8888888888888888, 'recall': 0.6153846153846154, 'f1': 0.7272727272727274, 'number': 13} | {'precision': 0.6255506607929515, 'recall': 0.7029702970297029, 'f1': 0.662004662004662, 'number': 202} | {'precision': 0.723404255319149, 'recall': 0.7906976744186046, 'f1': 0.7555555555555555, 'number': 43} | {'precision': 0.3157894736842105, 'recall': 0.3157894736842105, 'f1': 0.3157894736842105, 'number': 19} | 0.6291 | 0.6859 | 0.6563 | 0.9587 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1