--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: my_zh_CN_asr_cv13_model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: zh-CN split: train args: zh-CN metrics: - name: Wer type: wer value: 0.375 --- # my_zh_CN_asr_cv13_model This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1614 - Cer: 0.0674 - Wer: 0.375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:|:-----:| | 0.0489 | 249.002 | 1000 | 0.1566 | 0.0638 | 0.375 | | 0.0224 | 499.002 | 2000 | 0.1614 | 0.0674 | 0.375 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1