Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1435.39 +/- 47.64
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f453460b9de7a72daf31b9995032134fbfa4ff8f9b3d43ebfb68a3a0585f2da
|
3 |
+
size 129185
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f861869a9e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f861869aa70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f861869ab00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f861869ab90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f861869ac20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f861869acb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f861869ad40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f861869add0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f861869ae60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f861869aef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f861869af80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f86186e5ba0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658523569.9579756,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAOmtRPvbcrD5tFc8+MhPVP0MaiT9/lng/nyrBvpOGIL/BbWQ/pln+u91nQr+JhtW9ANtLv+8yXj98Q449pRFVvmnPdz/Z20E/czWgvsjoqD+JT5S+wYYPwFnziz8JgSo91yVjv5OTEj/b7rk+WDo2P0qVcD2zVHg/LYK1vnDY2b21LjQ/d1A0wHr/kL9+Jty+sYMoP1DZ5j/8/pu+khJcP9kWuT/N8j2+qjuCP5wkXL4oo5O/0jVKvy1bET4X3yvAWzKFv8TndT8a+5k/wzLGPtclY7+TkxI/2+65Plg6Nj+gPKc+1D2Zv6dCJD9coBNAaP2MPo3eDL/xnH4+2uNqvjArZj9Ko6S9pNp9P7KtmL/dK2y/J5GQP+bwSL+8rdS+kkSJvhWPaT87ypw+ik5mP2RKBz/rgK+/QD8xP2PA7z4sQpA/k5MSP9vuuT6b0bO/ttDIv0y8F78xgEE/bdhjv9jnND4JYIk/0bbivfjKGD/LG/W+Z0o+PyifJb/va7k/RoeAvx6z8z7fBOA+7GSfvz2rsr/0GXQ+wpkgP1CJwTyrQMg/Kp+PvkNYKr9rUlw91yVjv5OTEj/b7rk+WDo2P5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAG9BAbcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqaK49AAAAAH3H9b8AAAAA7PIEvgAAAAARIP8/AAAAAJaPhb0AAAAAY0njPwAAAAC9w209AAAAAIcS578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjO+I1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbMk/vAAAAAAKl+K/AAAAAFjXiT0AAAAA0jLtPwAAAAB/GKW7AAAAAMIA3T8AAAAAybISOwAAAADCoOe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqlcktgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN86Bz4AAAAAKIj6vwAAAACvwP+8AAAAAJu52z8AAAAA9sXbvAAAAAB/Df0/AAAAAPXcpL0AAAAAhtr7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGKkZrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAkS0Y8AAAAAHEC8b8AAAAA+7ipvQAAAABUNt8/AAAAAJ5bBz0AAAAA9ujuPwAAAADS6ba8AAAAAJUh9r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWLD7yhBZ+MAWyUTegDjAF0lEdAqRtH29L6DXV9lChoBkdAmP3yq2jO9mgHTegDaAhHQKke7zDn/1h1fZQoaAZHQJRrxajesPtoB03oA2gIR0CpIDYFiay9dX2UKGgGR0CWEwPacqe9aAdN6ANoCEdAqSQNITXarXV9lChoBkdAmnNrb1yvLWgHTegDaAhHQKkn+5HVf/p1fZQoaAZHQJiT+yB06o5oB03oA2gIR0CpK5575VOsdX2UKGgGR0CaEu8yN4qxaAdN6ANoCEdAqSzuR5kbxXV9lChoBkdAlIg3xvvSdGgHTegDaAhHQKkwwe0Xxe91fZQoaAZHQJQ5glD4QBhoB03oA2gIR0CpNJ+uV5bAdX2UKGgGR0CHYg/JNj9XaAdN6ANoCEdAqThNMPBi1HV9lChoBkdAjw5EZBLPEGgHTegDaAhHQKk5nR8c+7l1fZQoaAZHQJPxwdZJTVFoB03oA2gIR0CpPW0zCUHIdX2UKGgGR0CSRwn+Q2deaAdN6ANoCEdAqUFWOlwcYXV9lChoBkdAg17NvGZNPGgHTegDaAhHQKlFEyVObiJ1fZQoaAZHQI1FsmKIi1RoB03oA2gIR0CpRl7v5P/JdX2UKGgGR0CRgLV7Qb++aAdN6ANoCEdAqUot+Zw4sHV9lChoBkdAktZl0cOsk2gHTegDaAhHQKlOEFs54np1fZQoaAZHQJNzEXuVopRoB03oA2gIR0CpUcW/SH/MdX2UKGgGR0CHsAj7ALy+aAdN6ANoCEdAqVMRyQxN7HV9lChoBkdAhypwdKdxyWgHTegDaAhHQKlW4zi0fHR1fZQoaAZHQIYyOyC4BmxoB03oA2gIR0CpWsP0Zm7KdX2UKGgGR0CSAGPXTVlPaAdN6ANoCEdAqV51gpjMFHV9lChoBkdAkU0Vb/wRXmgHTegDaAhHQKlfyEkB0ZF1fZQoaAZHQI9OaDAaef9oB03oA2gIR0CpY53/xUeddX2UKGgGR0CIURxZuAI6aAdN6ANoCEdAqWeQWDYh+3V9lChoBkdAjszZX2dupGgHTegDaAhHQKlsVg88s+V1fZQoaAZHQI4cBtUGVzJoB03oA2gIR0Cpbd9tuUD/dX2UKGgGR0CR+KdGiHqNaAdN6ANoCEdAqXGc5ZKWcHV9lChoBkdAjaFT+NtIkWgHTegDaAhHQKl1nWe6I311fZQoaAZHQIyj/g3tKI1oB03oA2gIR0CpeXKrq+rVdX2UKGgGR0CFQN6pHZsbaAdN6ANoCEdAqXrK8J2MbXV9lChoBkdAmA5kj5bhWGgHTegDaAhHQKl+nhuwX691fZQoaAZHQJNLB8gIQe5oB03oA2gIR0CpgpN4A0bcdX2UKGgGR0CYsNBBRhttaAdN6ANoCEdAqYZGjCYTkHV9lChoBkdAlXNU9U0el2gHTegDaAhHQKmHmU+LWI51fZQoaAZHQJi3JanrIHVoB03oA2gIR0Cpi3U47zTXdX2UKGgGR0CTbCRkVeruaAdN6ANoCEdAqY9YDV6NVHV9lChoBkdAi1dr+PzWgGgHTegDaAhHQKmTAhJRO1x1fZQoaAZHQJvLpnh86WBoB03oA2gIR0CplEZ7gKnfdX2UKGgGR0CYLXox59mZaAdN6ANoCEdAqZgLaRISUXV9lChoBkdAj6GTzVc2SGgHTegDaAhHQKmb/07r9l51fZQoaAZHQI0E+eQMhHNoB03oA2gIR0Cpn7207bL2dX2UKGgGR0CQHeJ1q33IaAdN6ANoCEdAqaEP0mMOw3V9lChoBkdAlsjnpnpSrGgHTegDaAhHQKmk1VsDW9V1fZQoaAZHQIhZkiW3Sa5oB03oA2gIR0CpqLemFajfdX2UKGgGR0CN9+5NGmUGaAdN6ANoCEdAqaxtdcB2fXV9lChoBkdAjcvO5z5oG2gHTegDaAhHQKmtvb3XZoR1fZQoaAZHQIpMwMnZ00ZoB03oA2gIR0CpsYHyEtdzdX2UKGgGR0CT7NT2FnIyaAdN6ANoCEdAqbVtgBtDUnV9lChoBkdAkZj+9nK4hGgHTegDaAhHQKm5GYQ8OkN1fZQoaAZHQJKhUcGTs6doB03oA2gIR0CpumXfAKv3dX2UKGgGR0CQbarhR64UaAdN6ANoCEdAqb4vB7/n4nV9lChoBkdAlAKwxSHdoGgHTegDaAhHQKnCFl6JIlN1fZQoaAZHQJGGy0TlDF9oB03oA2gIR0Cpxcd12aDxdX2UKGgGR0COLB3bmEGraAdN6ANoCEdAqccjIeYD1XV9lChoBkdAk7FUx20Re2gHTegDaAhHQKnK+wFkhA51fZQoaAZHQJKR+kpI+W5oB03oA2gIR0Cpztq94/u9dX2UKGgGR0CWx1vbXYlIaAdN6ANoCEdAqdKGsYEW7HV9lChoBkdAjVZOd5IH1WgHTegDaAhHQKnT0qlP8AJ1fZQoaAZHQGhrjVpbliloB0uoaAhHQKnUpNdJJ5F1fZQoaAZHQJa1Pk1dgOVoB03oA2gIR0Cp15JlJ6IFdX2UKGgGR0CVktprDZUUaAdN6ANoCEdAqdtyhzvJBHV9lChoBkdAmPy97v5P/WgHTegDaAhHQKngcblRxcV1fZQoaAZHQJoApqsU7CBoB03oA2gIR0Cp4UJUHY6GdX2UKGgGR0CUh9xYaHbiaAdN6ANoCEdAqeQ2znied3V9lChoBkdAlbOzmSyMUGgHTegDaAhHQKnoDylvZRN1fZQoaAZHQJlKhWtEG7loB03oA2gIR0Cp7Q00elsQdX2UKGgGR0CVmjPrfLs9aAdN6ANoCEdAqe3WKyfL93V9lChoBkdAk+h5X6qKg2gHTegDaAhHQKnwx1U2kzp1fZQoaAZHQJTv4fhddE9oB03oA2gIR0Cp9KnJT2nLdX2UKGgGR0CVwbKnvUjLaAdN6ANoCEdAqfmaEOAiFHV9lChoBkdAmJ0USAYpD2gHTegDaAhHQKn6bB0p3HJ1fZQoaAZHQJhb0vK2a2FoB03oA2gIR0Cp/VLZBcAzdX2UKGgGR0CW035MURFraAdN6ANoCEdAqgFBKg7HQ3V9lChoBkdAmQ9Utuk1uWgHTegDaAhHQKoGP8Rcu8N1fZQoaAZHQJjF7nmq5sloB03oA2gIR0CqBxQxFiKBdX2UKGgGR0CVZGz9jwx4aAdN6ANoCEdAqgq1b3XZoXV9lChoBkdAlTXdH2AXmGgHTegDaAhHQKoPJayKNyZ1fZQoaAZHQJBBWIO6NERoB03oA2gIR0CqFA0zj3mFdX2UKGgGR0CVnbbpNbkfaAdN6ANoCEdAqhTdD4QBgnV9lChoBkdAltSp0r9VFWgHTegDaAhHQKoX2T/yXld1fZQoaAZHQJYnyhXbM5hoB03oA2gIR0CqG8s4LkS3dX2UKGgGR0CXnp6PKdQPaAdN6ANoCEdAqiDZBcAzYXV9lChoBkdAlhX9LcsUZmgHTegDaAhHQKohq7Pppvh1fZQoaAZHQJflWuW8h9toB03oA2gIR0CqJKsuez2OdX2UKGgGR0CWwfBczImxaAdN6ANoCEdAqiilEsrd33V9lChoBkdAlYCH+yZ8bGgHTegDaAhHQKotmlbeMyd1fZQoaAZHQJGjw5Jbt7doB03oA2gIR0CqLm7GNrCWdX2UKGgGR0CUn5t78ejmaAdN6ANoCEdAqjFgBFNL13V9lChoBkdAlfZeGO+7DmgHTegDaAhHQKo1OTVUdaN1fZQoaAZHQJRsfeXRgJFoB03oA2gIR0CqOi127nPndX2UKGgGR0CWhfRISUTtaAdN6ANoCEdAqjsAbS7XhHV9lChoBkdAlcB2O2iL22gHTegDaAhHQKo9/QxesxR1fZQoaAZHQJYpjU8V58loB03oA2gIR0CqQeaD5CWvdX2UKGgGR0CVMhBnzxwyaAdN6ANoCEdAqkbhtelbeXV9lChoBkdAl5O/ybx3FGgHTegDaAhHQKpHqeq7yx11fZQoaAZHQJWKw163RXxoB03oA2gIR0CqSpdadMCcdX2UKGgGR0CWXcyKvV3EaAdN6ANoCEdAqk57zyz5XXV9lChoBkdAlO+XrUsnRmgHTegDaAhHQKpTcAmzByl1fZQoaAZHQJU9OPmxMWZoB03oA2gIR0CqVEDwYtQLdWUu"
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fda5e2d7a2aadcecadf1485fe5d95cc2c28adb5dbfd9ca4a9ca398210a876c9
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eac50ee01a80b1e10494b57371749e515674a26f759bd4e9689cc998196b69b8
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f861869a9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f861869aa70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f861869ab00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f861869ab90>", "_build": "<function ActorCriticPolicy._build at 0x7f861869ac20>", "forward": "<function ActorCriticPolicy.forward at 0x7f861869acb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f861869ad40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f861869add0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f861869ae60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f861869aef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f861869af80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f86186e5ba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658523569.9579756, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAOmtRPvbcrD5tFc8+MhPVP0MaiT9/lng/nyrBvpOGIL/BbWQ/pln+u91nQr+JhtW9ANtLv+8yXj98Q449pRFVvmnPdz/Z20E/czWgvsjoqD+JT5S+wYYPwFnziz8JgSo91yVjv5OTEj/b7rk+WDo2P0qVcD2zVHg/LYK1vnDY2b21LjQ/d1A0wHr/kL9+Jty+sYMoP1DZ5j/8/pu+khJcP9kWuT/N8j2+qjuCP5wkXL4oo5O/0jVKvy1bET4X3yvAWzKFv8TndT8a+5k/wzLGPtclY7+TkxI/2+65Plg6Nj+gPKc+1D2Zv6dCJD9coBNAaP2MPo3eDL/xnH4+2uNqvjArZj9Ko6S9pNp9P7KtmL/dK2y/J5GQP+bwSL+8rdS+kkSJvhWPaT87ypw+ik5mP2RKBz/rgK+/QD8xP2PA7z4sQpA/k5MSP9vuuT6b0bO/ttDIv0y8F78xgEE/bdhjv9jnND4JYIk/0bbivfjKGD/LG/W+Z0o+PyifJb/va7k/RoeAvx6z8z7fBOA+7GSfvz2rsr/0GXQ+wpkgP1CJwTyrQMg/Kp+PvkNYKr9rUlw91yVjv5OTEj/b7rk+WDo2P5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAG9BAbcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqaK49AAAAAH3H9b8AAAAA7PIEvgAAAAARIP8/AAAAAJaPhb0AAAAAY0njPwAAAAC9w209AAAAAIcS578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjO+I1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbMk/vAAAAAAKl+K/AAAAAFjXiT0AAAAA0jLtPwAAAAB/GKW7AAAAAMIA3T8AAAAAybISOwAAAADCoOe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqlcktgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgN86Bz4AAAAAKIj6vwAAAACvwP+8AAAAAJu52z8AAAAA9sXbvAAAAAB/Df0/AAAAAPXcpL0AAAAAhtr7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGKkZrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAkS0Y8AAAAAHEC8b8AAAAA+7ipvQAAAABUNt8/AAAAAJ5bBz0AAAAA9ujuPwAAAADS6ba8AAAAAJUh9r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWLD7yhBZ+MAWyUTegDjAF0lEdAqRtH29L6DXV9lChoBkdAmP3yq2jO9mgHTegDaAhHQKke7zDn/1h1fZQoaAZHQJRrxajesPtoB03oA2gIR0CpIDYFiay9dX2UKGgGR0CWEwPacqe9aAdN6ANoCEdAqSQNITXarXV9lChoBkdAmnNrb1yvLWgHTegDaAhHQKkn+5HVf/p1fZQoaAZHQJiT+yB06o5oB03oA2gIR0CpK5575VOsdX2UKGgGR0CaEu8yN4qxaAdN6ANoCEdAqSzuR5kbxXV9lChoBkdAlIg3xvvSdGgHTegDaAhHQKkwwe0Xxe91fZQoaAZHQJQ5glD4QBhoB03oA2gIR0CpNJ+uV5bAdX2UKGgGR0CHYg/JNj9XaAdN6ANoCEdAqThNMPBi1HV9lChoBkdAjw5EZBLPEGgHTegDaAhHQKk5nR8c+7l1fZQoaAZHQJPxwdZJTVFoB03oA2gIR0CpPW0zCUHIdX2UKGgGR0CSRwn+Q2deaAdN6ANoCEdAqUFWOlwcYXV9lChoBkdAg17NvGZNPGgHTegDaAhHQKlFEyVObiJ1fZQoaAZHQI1FsmKIi1RoB03oA2gIR0CpRl7v5P/JdX2UKGgGR0CRgLV7Qb++aAdN6ANoCEdAqUot+Zw4sHV9lChoBkdAktZl0cOsk2gHTegDaAhHQKlOEFs54np1fZQoaAZHQJNzEXuVopRoB03oA2gIR0CpUcW/SH/MdX2UKGgGR0CHsAj7ALy+aAdN6ANoCEdAqVMRyQxN7HV9lChoBkdAhypwdKdxyWgHTegDaAhHQKlW4zi0fHR1fZQoaAZHQIYyOyC4BmxoB03oA2gIR0CpWsP0Zm7KdX2UKGgGR0CSAGPXTVlPaAdN6ANoCEdAqV51gpjMFHV9lChoBkdAkU0Vb/wRXmgHTegDaAhHQKlfyEkB0ZF1fZQoaAZHQI9OaDAaef9oB03oA2gIR0CpY53/xUeddX2UKGgGR0CIURxZuAI6aAdN6ANoCEdAqWeQWDYh+3V9lChoBkdAjszZX2dupGgHTegDaAhHQKlsVg88s+V1fZQoaAZHQI4cBtUGVzJoB03oA2gIR0Cpbd9tuUD/dX2UKGgGR0CR+KdGiHqNaAdN6ANoCEdAqXGc5ZKWcHV9lChoBkdAjaFT+NtIkWgHTegDaAhHQKl1nWe6I311fZQoaAZHQIyj/g3tKI1oB03oA2gIR0CpeXKrq+rVdX2UKGgGR0CFQN6pHZsbaAdN6ANoCEdAqXrK8J2MbXV9lChoBkdAmA5kj5bhWGgHTegDaAhHQKl+nhuwX691fZQoaAZHQJNLB8gIQe5oB03oA2gIR0CpgpN4A0bcdX2UKGgGR0CYsNBBRhttaAdN6ANoCEdAqYZGjCYTkHV9lChoBkdAlXNU9U0el2gHTegDaAhHQKmHmU+LWI51fZQoaAZHQJi3JanrIHVoB03oA2gIR0Cpi3U47zTXdX2UKGgGR0CTbCRkVeruaAdN6ANoCEdAqY9YDV6NVHV9lChoBkdAi1dr+PzWgGgHTegDaAhHQKmTAhJRO1x1fZQoaAZHQJvLpnh86WBoB03oA2gIR0CplEZ7gKnfdX2UKGgGR0CYLXox59mZaAdN6ANoCEdAqZgLaRISUXV9lChoBkdAj6GTzVc2SGgHTegDaAhHQKmb/07r9l51fZQoaAZHQI0E+eQMhHNoB03oA2gIR0Cpn7207bL2dX2UKGgGR0CQHeJ1q33IaAdN6ANoCEdAqaEP0mMOw3V9lChoBkdAlsjnpnpSrGgHTegDaAhHQKmk1VsDW9V1fZQoaAZHQIhZkiW3Sa5oB03oA2gIR0CpqLemFajfdX2UKGgGR0CN9+5NGmUGaAdN6ANoCEdAqaxtdcB2fXV9lChoBkdAjcvO5z5oG2gHTegDaAhHQKmtvb3XZoR1fZQoaAZHQIpMwMnZ00ZoB03oA2gIR0CpsYHyEtdzdX2UKGgGR0CT7NT2FnIyaAdN6ANoCEdAqbVtgBtDUnV9lChoBkdAkZj+9nK4hGgHTegDaAhHQKm5GYQ8OkN1fZQoaAZHQJKhUcGTs6doB03oA2gIR0CpumXfAKv3dX2UKGgGR0CQbarhR64UaAdN6ANoCEdAqb4vB7/n4nV9lChoBkdAlAKwxSHdoGgHTegDaAhHQKnCFl6JIlN1fZQoaAZHQJGGy0TlDF9oB03oA2gIR0Cpxcd12aDxdX2UKGgGR0COLB3bmEGraAdN6ANoCEdAqccjIeYD1XV9lChoBkdAk7FUx20Re2gHTegDaAhHQKnK+wFkhA51fZQoaAZHQJKR+kpI+W5oB03oA2gIR0Cpztq94/u9dX2UKGgGR0CWx1vbXYlIaAdN6ANoCEdAqdKGsYEW7HV9lChoBkdAjVZOd5IH1WgHTegDaAhHQKnT0qlP8AJ1fZQoaAZHQGhrjVpbliloB0uoaAhHQKnUpNdJJ5F1fZQoaAZHQJa1Pk1dgOVoB03oA2gIR0Cp15JlJ6IFdX2UKGgGR0CVktprDZUUaAdN6ANoCEdAqdtyhzvJBHV9lChoBkdAmPy97v5P/WgHTegDaAhHQKngcblRxcV1fZQoaAZHQJoApqsU7CBoB03oA2gIR0Cp4UJUHY6GdX2UKGgGR0CUh9xYaHbiaAdN6ANoCEdAqeQ2znied3V9lChoBkdAlbOzmSyMUGgHTegDaAhHQKnoDylvZRN1fZQoaAZHQJlKhWtEG7loB03oA2gIR0Cp7Q00elsQdX2UKGgGR0CVmjPrfLs9aAdN6ANoCEdAqe3WKyfL93V9lChoBkdAk+h5X6qKg2gHTegDaAhHQKnwx1U2kzp1fZQoaAZHQJTv4fhddE9oB03oA2gIR0Cp9KnJT2nLdX2UKGgGR0CVwbKnvUjLaAdN6ANoCEdAqfmaEOAiFHV9lChoBkdAmJ0USAYpD2gHTegDaAhHQKn6bB0p3HJ1fZQoaAZHQJhb0vK2a2FoB03oA2gIR0Cp/VLZBcAzdX2UKGgGR0CW035MURFraAdN6ANoCEdAqgFBKg7HQ3V9lChoBkdAmQ9Utuk1uWgHTegDaAhHQKoGP8Rcu8N1fZQoaAZHQJjF7nmq5sloB03oA2gIR0CqBxQxFiKBdX2UKGgGR0CVZGz9jwx4aAdN6ANoCEdAqgq1b3XZoXV9lChoBkdAlTXdH2AXmGgHTegDaAhHQKoPJayKNyZ1fZQoaAZHQJBBWIO6NERoB03oA2gIR0CqFA0zj3mFdX2UKGgGR0CVnbbpNbkfaAdN6ANoCEdAqhTdD4QBgnV9lChoBkdAltSp0r9VFWgHTegDaAhHQKoX2T/yXld1fZQoaAZHQJYnyhXbM5hoB03oA2gIR0CqG8s4LkS3dX2UKGgGR0CXnp6PKdQPaAdN6ANoCEdAqiDZBcAzYXV9lChoBkdAlhX9LcsUZmgHTegDaAhHQKohq7Pppvh1fZQoaAZHQJflWuW8h9toB03oA2gIR0CqJKsuez2OdX2UKGgGR0CWwfBczImxaAdN6ANoCEdAqiilEsrd33V9lChoBkdAlYCH+yZ8bGgHTegDaAhHQKotmlbeMyd1fZQoaAZHQJGjw5Jbt7doB03oA2gIR0CqLm7GNrCWdX2UKGgGR0CUn5t78ejmaAdN6ANoCEdAqjFgBFNL13V9lChoBkdAlfZeGO+7DmgHTegDaAhHQKo1OTVUdaN1fZQoaAZHQJRsfeXRgJFoB03oA2gIR0CqOi127nPndX2UKGgGR0CWhfRISUTtaAdN6ANoCEdAqjsAbS7XhHV9lChoBkdAlcB2O2iL22gHTegDaAhHQKo9/QxesxR1fZQoaAZHQJYpjU8V58loB03oA2gIR0CqQeaD5CWvdX2UKGgGR0CVMhBnzxwyaAdN6ANoCEdAqkbhtelbeXV9lChoBkdAl5O/ybx3FGgHTegDaAhHQKpHqeq7yx11fZQoaAZHQJWKw163RXxoB03oA2gIR0CqSpdadMCcdX2UKGgGR0CWXcyKvV3EaAdN6ANoCEdAqk57zyz5XXV9lChoBkdAlO+XrUsnRmgHTegDaAhHQKpTcAmzByl1fZQoaAZHQJU9OPmxMWZoB03oA2gIR0CqVEDwYtQLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c1d284899f12b4bd03cce7fddce8acbeaa6a77a9f0dce43edcafab89a49c15d
|
3 |
+
size 1190496
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1435.3859051599982, "std_reward": 47.635174847344175, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-22T22:12:11.573398"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83fe04d8f8560dd1a9287713b3d919b81eebf912017bb15b8fb55002d3b89ab4
|
3 |
+
size 2763
|