File size: 5,805 Bytes
8b80077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: llama3
base_model: tsavage68/IE_L3_1000steps_1e6rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: IE_L3_1000steps_1e8rate_03beta_cSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IE_L3_1000steps_1e8rate_03beta_cSFTDPO

This model is a fine-tuned version of [tsavage68/IE_L3_1000steps_1e6rate_SFT](https://huggingface.co/tsavage68/IE_L3_1000steps_1e6rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6864
- Rewards/chosen: -0.0017
- Rewards/rejected: -0.0201
- Rewards/accuracies: 0.4050
- Rewards/margins: 0.0184
- Logps/rejected: -75.6942
- Logps/chosen: -82.8034
- Logits/rejected: -0.7975
- Logits/chosen: -0.7402

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6912        | 0.4   | 50   | 0.6940          | -0.0075        | -0.0104          | 0.4000             | 0.0029          | -75.6618       | -82.8226     | -0.7964         | -0.7393       |
| 0.6947        | 0.8   | 100  | 0.6925          | 0.0014         | -0.0057          | 0.3850             | 0.0070          | -75.6461       | -82.7931     | -0.7963         | -0.7394       |
| 0.6873        | 1.2   | 150  | 0.6982          | -0.0140        | -0.0096          | 0.3950             | -0.0044         | -75.6592       | -82.8444     | -0.7963         | -0.7393       |
| 0.6777        | 1.6   | 200  | 0.6892          | -0.0038        | -0.0171          | 0.4100             | 0.0134          | -75.6844       | -82.8103     | -0.7963         | -0.7393       |
| 0.6879        | 2.0   | 250  | 0.6890          | -0.0049        | -0.0185          | 0.3800             | 0.0136          | -75.6890       | -82.8142     | -0.7980         | -0.7411       |
| 0.6991        | 2.4   | 300  | 0.6849          | -0.0170        | -0.0393          | 0.4300             | 0.0223          | -75.7583       | -82.8544     | -0.7974         | -0.7404       |
| 0.678         | 2.8   | 350  | 0.6716          | -0.0122        | -0.0614          | 0.4900             | 0.0492          | -75.8319       | -82.8383     | -0.7967         | -0.7398       |
| 0.7072        | 3.2   | 400  | 0.6885          | -0.0120        | -0.0278          | 0.4350             | 0.0158          | -75.7200       | -82.8378     | -0.7974         | -0.7404       |
| 0.6858        | 3.6   | 450  | 0.6943          | -0.0160        | -0.0191          | 0.3450             | 0.0031          | -75.6910       | -82.8512     | -0.7974         | -0.7404       |
| 0.6815        | 4.0   | 500  | 0.6821          | -0.0089        | -0.0364          | 0.4300             | 0.0275          | -75.7484       | -82.8273     | -0.7972         | -0.7401       |
| 0.6857        | 4.4   | 550  | 0.6879          | -0.0086        | -0.0255          | 0.4000             | 0.0169          | -75.7121       | -82.8263     | -0.7972         | -0.7403       |
| 0.6825        | 4.8   | 600  | 0.6854          | -0.0203        | -0.0417          | 0.4150             | 0.0214          | -75.7663       | -82.8655     | -0.7968         | -0.7398       |
| 0.698         | 5.2   | 650  | 0.6921          | -0.0186        | -0.0277          | 0.4200             | 0.0091          | -75.7196       | -82.8597     | -0.7973         | -0.7401       |
| 0.6795        | 5.6   | 700  | 0.6885          | -0.0063        | -0.0217          | 0.3700             | 0.0154          | -75.6996       | -82.8189     | -0.7973         | -0.7402       |
| 0.6931        | 6.0   | 750  | 0.6875          | -0.0110        | -0.0282          | 0.4150             | 0.0172          | -75.7213       | -82.8344     | -0.7974         | -0.7404       |
| 0.6804        | 6.4   | 800  | 0.6888          | -0.0053        | -0.0191          | 0.3800             | 0.0137          | -75.6909       | -82.8156     | -0.7975         | -0.7402       |
| 0.6958        | 6.8   | 850  | 0.6864          | -0.0017        | -0.0201          | 0.4050             | 0.0184          | -75.6942       | -82.8034     | -0.7975         | -0.7402       |
| 0.6932        | 7.2   | 900  | 0.6864          | -0.0017        | -0.0201          | 0.4050             | 0.0184          | -75.6942       | -82.8034     | -0.7975         | -0.7402       |
| 0.6785        | 7.6   | 950  | 0.6864          | -0.0017        | -0.0201          | 0.4050             | 0.0184          | -75.6942       | -82.8034     | -0.7975         | -0.7402       |
| 0.6947        | 8.0   | 1000 | 0.6864          | -0.0017        | -0.0201          | 0.4050             | 0.0184          | -75.6942       | -82.8034     | -0.7975         | -0.7402       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.0.0+cu117
- Datasets 3.0.0
- Tokenizers 0.19.1