File size: 3,310 Bytes
8f2f6af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: apache-2.0
base_model: tsavage68/IE_M2_1000steps_1e7rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: IE_M2_350steps_1e8rate_03beta_cSFTDPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IE_M2_350steps_1e8rate_03beta_cSFTDPO
This model is a fine-tuned version of [tsavage68/IE_M2_1000steps_1e7rate_SFT](https://huggingface.co/tsavage68/IE_M2_1000steps_1e7rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6746
- Rewards/chosen: -0.0013
- Rewards/rejected: -0.0404
- Rewards/accuracies: 0.3600
- Rewards/margins: 0.0391
- Logps/rejected: -41.1564
- Logps/chosen: -42.2098
- Logits/rejected: -2.9159
- Logits/chosen: -2.8545
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 350
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6998 | 0.4 | 50 | 0.6949 | 0.0058 | 0.0085 | 0.2050 | -0.0028 | -40.9934 | -42.1863 | -2.9160 | -2.8547 |
| 0.6925 | 0.8 | 100 | 0.6906 | 0.0017 | -0.0041 | 0.2600 | 0.0059 | -41.0355 | -42.1997 | -2.9159 | -2.8546 |
| 0.679 | 1.2 | 150 | 0.6779 | 0.0047 | -0.0273 | 0.3650 | 0.0320 | -41.1127 | -42.1899 | -2.9158 | -2.8546 |
| 0.6715 | 1.6 | 200 | 0.6747 | 0.0020 | -0.0367 | 0.3900 | 0.0387 | -41.1442 | -42.1988 | -2.9156 | -2.8544 |
| 0.6764 | 2.0 | 250 | 0.6736 | -0.0012 | -0.0419 | 0.3850 | 0.0407 | -41.1614 | -42.2094 | -2.9156 | -2.8543 |
| 0.6842 | 2.4 | 300 | 0.6763 | -0.0024 | -0.0380 | 0.3500 | 0.0355 | -41.1483 | -42.2137 | -2.9159 | -2.8545 |
| 0.6712 | 2.8 | 350 | 0.6746 | -0.0013 | -0.0404 | 0.3600 | 0.0391 | -41.1564 | -42.2098 | -2.9159 | -2.8545 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.0.0+cu117
- Datasets 3.0.0
- Tokenizers 0.19.1
|