File size: 5,819 Bytes
49d9b61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: apache-2.0
base_model: tsavage68/Na_M2_1000steps_1e7_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Na_M2_1000steps_1e6rate_05beta_cSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Na_M2_1000steps_1e6rate_05beta_cSFTDPO

This model is a fine-tuned version of [tsavage68/Na_M2_1000steps_1e7_SFT](https://huggingface.co/tsavage68/Na_M2_1000steps_1e7_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Rewards/chosen: 3.9080
- Rewards/rejected: -14.8092
- Rewards/accuracies: 1.0
- Rewards/margins: 18.7172
- Logps/rejected: -109.5417
- Logps/chosen: -40.3163
- Logits/rejected: -2.5104
- Logits/chosen: -2.5251

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0           | 0.2667 | 50   | 0.0000          | 2.9065         | -11.8929         | 1.0                | 14.7994         | -103.7091      | -42.3194     | -2.5220         | -2.5359       |
| 0.0           | 0.5333 | 100  | 0.0000          | 3.3215         | -13.0434         | 1.0                | 16.3649         | -106.0102      | -41.4894     | -2.5188         | -2.5330       |
| 0.0           | 0.8    | 150  | 0.0000          | 3.5466         | -13.5189         | 1.0                | 17.0655         | -106.9612      | -41.0391     | -2.5174         | -2.5317       |
| 0.0           | 1.0667 | 200  | 0.0000          | 3.6119         | -13.8627         | 1.0                | 17.4745         | -107.6487      | -40.9087     | -2.5143         | -2.5288       |
| 0.0           | 1.3333 | 250  | 0.0000          | 3.7085         | -14.0115         | 1.0                | 17.7200         | -107.9463      | -40.7154     | -2.5151         | -2.5296       |
| 0.0           | 1.6    | 300  | 0.0000          | 3.7952         | -14.1247         | 1.0                | 17.9199         | -108.1728      | -40.5420     | -2.5141         | -2.5286       |
| 0.0           | 1.8667 | 350  | 0.0000          | 3.7740         | -14.2878         | 1.0                | 18.0618         | -108.4989      | -40.5843     | -2.5139         | -2.5284       |
| 0.0           | 2.1333 | 400  | 0.0000          | 3.8254         | -14.4626         | 1.0                | 18.2880         | -108.8486      | -40.4816     | -2.5124         | -2.5269       |
| 0.0           | 2.4    | 450  | 0.0000          | 3.8372         | -14.5044         | 1.0                | 18.3416         | -108.9322      | -40.4579     | -2.5127         | -2.5273       |
| 0.0           | 2.6667 | 500  | 0.0000          | 3.8544         | -14.6284         | 1.0                | 18.4828         | -109.1802      | -40.4237     | -2.5115         | -2.5260       |
| 0.0           | 2.9333 | 550  | 0.0000          | 3.8744         | -14.6609         | 1.0                | 18.5353         | -109.2451      | -40.3835     | -2.5116         | -2.5262       |
| 0.0           | 3.2    | 600  | 0.0000          | 3.9000         | -14.7002         | 1.0                | 18.6002         | -109.3238      | -40.3324     | -2.5103         | -2.5249       |
| 0.0           | 3.4667 | 650  | 0.0000          | 3.9168         | -14.7537         | 1.0                | 18.6705         | -109.4308      | -40.2988     | -2.5105         | -2.5252       |
| 0.0           | 3.7333 | 700  | 0.0000          | 3.9175         | -14.7437         | 1.0                | 18.6612         | -109.4108      | -40.2974     | -2.5112         | -2.5259       |
| 0.0           | 4.0    | 750  | 0.0000          | 3.9128         | -14.7841         | 1.0                | 18.6969         | -109.4916      | -40.3068     | -2.5104         | -2.5250       |
| 0.0           | 4.2667 | 800  | 0.0000          | 3.9063         | -14.7726         | 1.0                | 18.6788         | -109.4685      | -40.3198     | -2.5107         | -2.5253       |
| 0.0           | 4.5333 | 850  | 0.0000          | 3.9178         | -14.7925         | 1.0                | 18.7103         | -109.5084      | -40.2969     | -2.5104         | -2.5251       |
| 0.0           | 4.8    | 900  | 0.0000          | 3.9074         | -14.8080         | 1.0                | 18.7154         | -109.5393      | -40.3176     | -2.5104         | -2.5251       |
| 0.0           | 5.0667 | 950  | 0.0000          | 3.9080         | -14.8092         | 1.0                | 18.7172         | -109.5417      | -40.3163     | -2.5104         | -2.5251       |
| 0.0           | 5.3333 | 1000 | 0.0000          | 3.9080         | -14.8092         | 1.0                | 18.7172         | -109.5417      | -40.3163     | -2.5104         | -2.5251       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1