File size: 5,819 Bytes
55a0874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: apache-2.0
base_model: tsavage68/Na_M2_1000steps_1e7_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Na_M2_1000steps_1e7rate_03beta_cSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Na_M2_1000steps_1e7rate_03beta_cSFTDPO

This model is a fine-tuned version of [tsavage68/Na_M2_1000steps_1e7_SFT](https://huggingface.co/tsavage68/Na_M2_1000steps_1e7_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Rewards/chosen: 3.5522
- Rewards/rejected: -11.1817
- Rewards/accuracies: 1.0
- Rewards/margins: 14.7339
- Logps/rejected: -117.1956
- Logps/chosen: -36.2917
- Logits/rejected: -2.4993
- Logits/chosen: -2.5149

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0004        | 0.2667 | 50   | 0.0000          | 2.3360         | -8.0685          | 1.0                | 10.4045         | -106.8185      | -40.3458     | -2.5169         | -2.5309       |
| 0.0           | 0.5333 | 100  | 0.0000          | 2.8383         | -9.2541          | 1.0                | 12.0924         | -110.7703      | -38.6713     | -2.5103         | -2.5250       |
| 0.0           | 0.8    | 150  | 0.0000          | 3.0920         | -9.7555          | 1.0                | 12.8475         | -112.4418      | -37.8257     | -2.5067         | -2.5217       |
| 0.0           | 1.0667 | 200  | 0.0000          | 3.2037         | -10.0769         | 1.0                | 13.2806         | -113.5130      | -37.4533     | -2.5051         | -2.5202       |
| 0.0           | 1.3333 | 250  | 0.0000          | 3.2784         | -10.3241         | 1.0                | 13.6025         | -114.3372      | -37.2044     | -2.5046         | -2.5198       |
| 0.0           | 1.6    | 300  | 0.0000          | 3.3562         | -10.5498         | 1.0                | 13.9060         | -115.0894      | -36.9450     | -2.5033         | -2.5186       |
| 0.0           | 1.8667 | 350  | 0.0000          | 3.4141         | -10.7123         | 1.0                | 14.1265         | -115.6312      | -36.7520     | -2.5019         | -2.5173       |
| 0.0           | 2.1333 | 400  | 0.0000          | 3.4694         | -10.8608         | 1.0                | 14.3302         | -116.1261      | -36.5679     | -2.5020         | -2.5174       |
| 0.0           | 2.4    | 450  | 0.0000          | 3.4912         | -10.9759         | 1.0                | 14.4671         | -116.5096      | -36.4950     | -2.5011         | -2.5165       |
| 0.0           | 2.6667 | 500  | 0.0000          | 3.5172         | -11.0415         | 1.0                | 14.5587         | -116.7282      | -36.4083     | -2.5010         | -2.5165       |
| 0.0           | 2.9333 | 550  | 0.0000          | 3.5281         | -11.1219         | 1.0                | 14.6500         | -116.9964      | -36.3719     | -2.4999         | -2.5154       |
| 0.0           | 3.2    | 600  | 0.0000          | 3.5544         | -11.1376         | 1.0                | 14.6920         | -117.0486      | -36.2843     | -2.4985         | -2.5140       |
| 0.0           | 3.4667 | 650  | 0.0000          | 3.5412         | -11.1686         | 1.0                | 14.7098         | -117.1519      | -36.3284     | -2.4993         | -2.5149       |
| 0.0           | 3.7333 | 700  | 0.0000          | 3.5592         | -11.1405         | 1.0                | 14.6997         | -117.0585      | -36.2685     | -2.4988         | -2.5143       |
| 0.0           | 4.0    | 750  | 0.0000          | 3.5602         | -11.1575         | 1.0                | 14.7177         | -117.1151      | -36.2652     | -2.4993         | -2.5148       |
| 0.0           | 4.2667 | 800  | 0.0000          | 3.5534         | -11.1617         | 1.0                | 14.7151         | -117.1290      | -36.2877     | -2.4996         | -2.5152       |
| 0.0           | 4.5333 | 850  | 0.0000          | 3.5623         | -11.1612         | 1.0                | 14.7234         | -117.1272      | -36.2582     | -2.4994         | -2.5150       |
| 0.0           | 4.8    | 900  | 0.0000          | 3.5522         | -11.1817         | 1.0                | 14.7339         | -117.1956      | -36.2917     | -2.4993         | -2.5149       |
| 0.0           | 5.0667 | 950  | 0.0000          | 3.5522         | -11.1817         | 1.0                | 14.7339         | -117.1956      | -36.2917     | -2.4993         | -2.5149       |
| 0.0           | 5.3333 | 1000 | 0.0000          | 3.5522         | -11.1817         | 1.0                | 14.7339         | -117.1956      | -36.2917     | -2.4993         | -2.5149       |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1