--- library_name: transformers license: apache-2.0 base_model: tsavage68/Na_M2_1000steps_1e7_SFT tags: - trl - dpo - generated_from_trainer model-index: - name: Na_M2_1000steps_1e8rate_05beta_cSFTDPO results: [] --- # Na_M2_1000steps_1e8rate_05beta_cSFTDPO This model is a fine-tuned version of [tsavage68/Na_M2_1000steps_1e7_SFT](https://huggingface.co/tsavage68/Na_M2_1000steps_1e7_SFT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3285 - Rewards/chosen: 0.2983 - Rewards/rejected: -0.6864 - Rewards/accuracies: 1.0 - Rewards/margins: 0.9847 - Logps/rejected: -81.2962 - Logps/chosen: -47.5358 - Logits/rejected: -2.5349 - Logits/chosen: -2.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-08 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6915 | 0.2667 | 50 | 0.6994 | 0.0060 | 0.0118 | 0.5400 | -0.0058 | -79.8998 | -48.1204 | -2.5353 | -2.5479 | | 0.6635 | 0.5333 | 100 | 0.6459 | 0.0371 | -0.0697 | 0.7100 | 0.1068 | -80.0629 | -48.0583 | -2.5354 | -2.5480 | | 0.5585 | 0.8 | 150 | 0.5484 | 0.1041 | -0.2242 | 0.9400 | 0.3283 | -80.3718 | -47.9241 | -2.5344 | -2.5470 | | 0.5041 | 1.0667 | 200 | 0.4568 | 0.1548 | -0.4106 | 1.0 | 0.5654 | -80.7446 | -47.8228 | -2.5349 | -2.5475 | | 0.4012 | 1.3333 | 250 | 0.3983 | 0.2253 | -0.5152 | 1.0 | 0.7405 | -80.9538 | -47.6818 | -2.5354 | -2.5479 | | 0.3304 | 1.6 | 300 | 0.3692 | 0.2306 | -0.6109 | 1.0 | 0.8415 | -81.1452 | -47.6712 | -2.5346 | -2.5472 | | 0.3396 | 1.8667 | 350 | 0.3524 | 0.2373 | -0.6582 | 1.0 | 0.8955 | -81.2397 | -47.6578 | -2.5349 | -2.5474 | | 0.3311 | 2.1333 | 400 | 0.3304 | 0.2656 | -0.7177 | 1.0 | 0.9834 | -81.3589 | -47.6011 | -2.5350 | -2.5475 | | 0.3099 | 2.4 | 450 | 0.3378 | 0.2807 | -0.6665 | 1.0 | 0.9472 | -81.2563 | -47.5710 | -2.5361 | -2.5486 | | 0.3384 | 2.6667 | 500 | 0.3271 | 0.2743 | -0.7151 | 1.0 | 0.9894 | -81.3535 | -47.5838 | -2.5349 | -2.5474 | | 0.3381 | 2.9333 | 550 | 0.3284 | 0.2854 | -0.7005 | 1.0 | 0.9859 | -81.3243 | -47.5616 | -2.5347 | -2.5472 | | 0.3328 | 3.2 | 600 | 0.3217 | 0.2963 | -0.7183 | 1.0 | 1.0146 | -81.3600 | -47.5398 | -2.5349 | -2.5474 | | 0.3162 | 3.4667 | 650 | 0.3252 | 0.3046 | -0.6916 | 1.0 | 0.9962 | -81.3066 | -47.5232 | -2.5358 | -2.5483 | | 0.2907 | 3.7333 | 700 | 0.3331 | 0.3002 | -0.6711 | 1.0 | 0.9713 | -81.2656 | -47.5319 | -2.5350 | -2.5475 | | 0.3052 | 4.0 | 750 | 0.3279 | 0.2998 | -0.6877 | 1.0 | 0.9875 | -81.2988 | -47.5328 | -2.5350 | -2.5474 | | 0.3264 | 4.2667 | 800 | 0.3285 | 0.2983 | -0.6864 | 1.0 | 0.9847 | -81.2962 | -47.5358 | -2.5349 | -2.5474 | | 0.3196 | 4.5333 | 850 | 0.3285 | 0.2983 | -0.6864 | 1.0 | 0.9847 | -81.2962 | -47.5358 | -2.5349 | -2.5474 | | 0.2962 | 4.8 | 900 | 0.3285 | 0.2983 | -0.6864 | 1.0 | 0.9847 | -81.2962 | -47.5358 | -2.5349 | -2.5474 | | 0.3115 | 5.0667 | 950 | 0.3285 | 0.2983 | -0.6864 | 1.0 | 0.9847 | -81.2962 | -47.5358 | -2.5349 | -2.5474 | | 0.3285 | 5.3333 | 1000 | 0.3285 | 0.2983 | -0.6864 | 1.0 | 0.9847 | -81.2962 | -47.5358 | -2.5349 | -2.5474 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1