File size: 5,829 Bytes
169e74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: llama3
base_model: tsavage68/Summary_L3_1000steps_1e7rate_SFT2
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Summary_L3_1000steps_1e5rate_01beta_CSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Summary_L3_1000steps_1e5rate_01beta_CSFTDPO

This model is a fine-tuned version of [tsavage68/Summary_L3_1000steps_1e7rate_SFT2](https://huggingface.co/tsavage68/Summary_L3_1000steps_1e7rate_SFT2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5961
- Rewards/chosen: -0.8715
- Rewards/rejected: -3.9531
- Rewards/accuracies: 0.1400
- Rewards/margins: 3.0816
- Logps/rejected: -54.7948
- Logps/chosen: -18.0977
- Logits/rejected: -1.3576
- Logits/chosen: -1.3527

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5546        | 0.2004 | 50   | 0.5961          | -0.8720        | -3.9451          | 0.1400             | 3.0730          | -54.7146       | -18.1031     | -1.3571         | -1.3522       |
| 0.6585        | 0.4008 | 100  | 0.5961          | -0.8712        | -3.9495          | 0.1400             | 3.0783          | -54.7588       | -18.0949     | -1.3575         | -1.3526       |
| 0.6238        | 0.6012 | 150  | 0.5961          | -0.8681        | -3.9389          | 0.1400             | 3.0707          | -54.6525       | -18.0641     | -1.3563         | -1.3514       |
| 0.6065        | 0.8016 | 200  | 0.5961          | -0.8725        | -3.9499          | 0.1400             | 3.0774          | -54.7626       | -18.1074     | -1.3568         | -1.3519       |
| 0.6238        | 1.0020 | 250  | 0.5961          | -0.8717        | -3.9513          | 0.1400             | 3.0796          | -54.7771       | -18.1000     | -1.3576         | -1.3527       |
| 0.6238        | 1.2024 | 300  | 0.5961          | -0.8725        | -3.9481          | 0.1400             | 3.0756          | -54.7450       | -18.1078     | -1.3571         | -1.3522       |
| 0.6238        | 1.4028 | 350  | 0.5961          | -0.8727        | -3.9498          | 0.1400             | 3.0771          | -54.7614       | -18.1094     | -1.3572         | -1.3523       |
| 0.5718        | 1.6032 | 400  | 0.5961          | -0.8724        | -3.9505          | 0.1400             | 3.0781          | -54.7691       | -18.1072     | -1.3573         | -1.3524       |
| 0.5892        | 1.8036 | 450  | 0.5961          | -0.8726        | -3.9502          | 0.1400             | 3.0776          | -54.7655       | -18.1083     | -1.3573         | -1.3523       |
| 0.5718        | 2.0040 | 500  | 0.5961          | -0.8717        | -3.9446          | 0.1400             | 3.0728          | -54.7095       | -18.1001     | -1.3575         | -1.3526       |
| 0.5718        | 2.2044 | 550  | 0.5961          | -0.8733        | -3.9538          | 0.1400             | 3.0805          | -54.8019       | -18.1157     | -1.3569         | -1.3521       |
| 0.5545        | 2.4048 | 600  | 0.5961          | -0.8691        | -3.9509          | 0.1400             | 3.0818          | -54.7729       | -18.0740     | -1.3573         | -1.3524       |
| 0.5199        | 2.6052 | 650  | 0.5961          | -0.8731        | -3.9531          | 0.1400             | 3.0800          | -54.7946       | -18.1135     | -1.3573         | -1.3524       |
| 0.6238        | 2.8056 | 700  | 0.5961          | -0.8719        | -3.9544          | 0.1400             | 3.0826          | -54.8080       | -18.1013     | -1.3581         | -1.3532       |
| 0.6065        | 3.0060 | 750  | 0.5961          | -0.8719        | -3.9517          | 0.1400             | 3.0798          | -54.7812       | -18.1017     | -1.3575         | -1.3526       |
| 0.6412        | 3.2064 | 800  | 0.5961          | -0.8706        | -3.9530          | 0.1400             | 3.0824          | -54.7941       | -18.0886     | -1.3574         | -1.3525       |
| 0.6585        | 3.4068 | 850  | 0.5961          | -0.8715        | -3.9512          | 0.1400             | 3.0798          | -54.7760       | -18.0975     | -1.3577         | -1.3529       |
| 0.6238        | 3.6072 | 900  | 0.5961          | -0.8715        | -3.9512          | 0.1400             | 3.0798          | -54.7760       | -18.0975     | -1.3577         | -1.3529       |
| 0.5372        | 3.8076 | 950  | 0.5961          | -0.8715        | -3.9531          | 0.1400             | 3.0816          | -54.7948       | -18.0977     | -1.3576         | -1.3527       |
| 0.6238        | 4.0080 | 1000 | 0.5961          | -0.8715        | -3.9531          | 0.1400             | 3.0816          | -54.7948       | -18.0977     | -1.3576         | -1.3527       |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1