File size: 5,827 Bytes
4d102ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: llama3
base_model: tsavage68/Summary_L3_1000steps_1e7rate_SFT2
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: Summary_L3_1000steps_1e7rate_05beta_CSFTDPO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Summary_L3_1000steps_1e7rate_05beta_CSFTDPO

This model is a fine-tuned version of [tsavage68/Summary_L3_1000steps_1e7rate_SFT2](https://huggingface.co/tsavage68/Summary_L3_1000steps_1e7rate_SFT2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5962
- Rewards/chosen: 0.0959
- Rewards/rejected: -1.3470
- Rewards/accuracies: 0.1400
- Rewards/margins: 1.4430
- Logps/rejected: -17.9578
- Logps/chosen: -9.1909
- Logits/rejected: -1.1008
- Logits/chosen: -1.1023

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6835        | 0.2004 | 50   | 0.6724          | 0.0066         | -0.0411          | 0.1350             | 0.0477          | -15.3460       | -9.3696      | -1.0959         | -1.0974       |
| 0.6728        | 0.4008 | 100  | 0.6273          | 0.0168         | -0.1873          | 0.1400             | 0.2041          | -15.6383       | -9.3492      | -1.0942         | -1.0958       |
| 0.6258        | 0.6012 | 150  | 0.5991          | 0.0579         | -0.5769          | 0.1400             | 0.6348          | -16.4175       | -9.2670      | -1.0922         | -1.0939       |
| 0.6069        | 0.8016 | 200  | 0.5969          | 0.0750         | -0.8979          | 0.1400             | 0.9729          | -17.0596       | -9.2328      | -1.0945         | -1.0962       |
| 0.6239        | 1.0020 | 250  | 0.5966          | 0.0810         | -1.0669          | 0.1400             | 1.1479          | -17.3976       | -9.2207      | -1.0969         | -1.0985       |
| 0.6238        | 1.2024 | 300  | 0.5965          | 0.0913         | -1.1354          | 0.1400             | 1.2267          | -17.5345       | -9.2001      | -1.0979         | -1.0995       |
| 0.6239        | 1.4028 | 350  | 0.5963          | 0.0832         | -1.2037          | 0.1400             | 1.2869          | -17.6712       | -9.2164      | -1.0994         | -1.1009       |
| 0.5723        | 1.6032 | 400  | 0.5963          | 0.0939         | -1.2663          | 0.1400             | 1.3602          | -17.7963       | -9.1950      | -1.0995         | -1.1010       |
| 0.5892        | 1.8036 | 450  | 0.5962          | 0.0906         | -1.3049          | 0.1400             | 1.3956          | -17.8736       | -9.2015      | -1.1002         | -1.1017       |
| 0.5719        | 2.0040 | 500  | 0.5962          | 0.0919         | -1.3133          | 0.1400             | 1.4052          | -17.8904       | -9.1991      | -1.1004         | -1.1018       |
| 0.5719        | 2.2044 | 550  | 0.5963          | 0.0928         | -1.3222          | 0.1400             | 1.4150          | -17.9082       | -9.1971      | -1.1003         | -1.1018       |
| 0.5545        | 2.4048 | 600  | 0.5962          | 0.0967         | -1.3312          | 0.1400             | 1.4279          | -17.9262       | -9.1895      | -1.1006         | -1.1020       |
| 0.5199        | 2.6052 | 650  | 0.5962          | 0.0910         | -1.3466          | 0.1400             | 1.4376          | -17.9569       | -9.2007      | -1.1008         | -1.1023       |
| 0.624         | 2.8056 | 700  | 0.5962          | 0.0912         | -1.3547          | 0.1400             | 1.4459          | -17.9732       | -9.2004      | -1.1006         | -1.1021       |
| 0.6065        | 3.0060 | 750  | 0.5962          | 0.0952         | -1.3445          | 0.1400             | 1.4397          | -17.9527       | -9.1924      | -1.1007         | -1.1022       |
| 0.6412        | 3.2064 | 800  | 0.5962          | 0.0965         | -1.3521          | 0.1400             | 1.4486          | -17.9680       | -9.1898      | -1.1008         | -1.1023       |
| 0.6585        | 3.4068 | 850  | 0.5962          | 0.0984         | -1.3572          | 0.1400             | 1.4556          | -17.9781       | -9.1860      | -1.1005         | -1.1020       |
| 0.6238        | 3.6072 | 900  | 0.5962          | 0.0967         | -1.3456          | 0.1400             | 1.4423          | -17.9550       | -9.1894      | -1.1010         | -1.1024       |
| 0.5372        | 3.8076 | 950  | 0.5962          | 0.0959         | -1.3470          | 0.1400             | 1.4430          | -17.9578       | -9.1909      | -1.1008         | -1.1023       |
| 0.6238        | 4.0080 | 1000 | 0.5962          | 0.0959         | -1.3470          | 0.1400             | 1.4430          | -17.9578       | -9.1909      | -1.1008         | -1.1023       |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1