SALMONN-7B / beats /Tokenizers.py
tangchangli
chore: init repo
7cf7820
# --------------------------------------------------------
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
# Github source: https://github.com/microsoft/unilm/tree/master/beats
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import torch
import torch.nn as nn
from torch.nn import LayerNorm
import torchaudio.compliance.kaldi as ta_kaldi
from beats.backbone import (
TransformerEncoder,
)
from beats.quantizer import (
NormEMAVectorQuantizer,
)
import logging
from typing import Optional
logger = logging.getLogger(__name__)
class TokenizersConfig:
def __init__(self, cfg=None):
self.input_patch_size: int = -1 # path size of patch embedding
self.embed_dim: int = 512 # patch embedding dimension
self.conv_bias: bool = False # include bias in conv encoder
self.encoder_layers: int = 12 # num encoder layers in the transformer
self.encoder_embed_dim: int = 768 # encoder embedding dimension
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
self.encoder_attention_heads: int = 12 # num encoder attention heads
self.activation_fn: str = "gelu" # activation function to use
self.layer_norm_first: bool = False # apply layernorm first in the transformer
self.deep_norm: bool = False # apply deep_norm first in the transformer
# dropouts
self.dropout: float = 0.1 # dropout probability for the transformer
self.attention_dropout: float = 0.1 # dropout probability for attention weights
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
# positional embeddings
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
# relative position embedding
self.relative_position_embedding: bool = False # apply relative position embedding
self.num_buckets: int = 320 # number of buckets for relative position embedding
self.max_distance: int = 1280 # maximum distance for relative position embedding
self.gru_rel_pos: bool = False # apply gated relative position embedding
# quantizer
self.quant_n: int = 1024 # codebook number in quantizer
self.quant_dim: int = 256 # codebook dimension in quantizer
if cfg is not None:
self.update(cfg)
def update(self, cfg: dict):
self.__dict__.update(cfg)
class Tokenizers(nn.Module):
def __init__(
self,
cfg: TokenizersConfig,
) -> None:
super().__init__()
logger.info(f"Tokenizers Config: {cfg.__dict__}")
self.cfg = cfg
self.embed = cfg.embed_dim
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim
else None
)
self.input_patch_size = cfg.input_patch_size
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size,
bias=cfg.conv_bias)
self.dropout_input = nn.Dropout(cfg.dropout_input)
assert not cfg.deep_norm or not cfg.layer_norm_first
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
self.quantize = NormEMAVectorQuantizer(
n_embed=cfg.quant_n, embedding_dim=cfg.quant_dim, beta=1.0, kmeans_init=True, decay=0.99,
)
self.quant_n = cfg.quant_n
self.quantize_layer = nn.Sequential(
nn.Linear(cfg.encoder_embed_dim, cfg.encoder_embed_dim),
nn.Tanh(),
nn.Linear(cfg.encoder_embed_dim, cfg.quant_dim) # for quantize
)
def forward_padding_mask(
self,
features: torch.Tensor,
padding_mask: torch.Tensor,
) -> torch.Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(
padding_mask.size(0), features.size(1), -1
)
padding_mask = padding_mask.all(-1)
return padding_mask
def preprocess(
self,
source: torch.Tensor,
fbank_mean: float = 15.41663,
fbank_std: float = 6.55582,
) -> torch.Tensor:
fbanks = []
for waveform in source:
waveform = waveform.unsqueeze(0) * 2 ** 15
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10)
fbanks.append(fbank)
fbank = torch.stack(fbanks, dim=0)
fbank = (fbank - fbank_mean) / (2 * fbank_std)
return fbank
def extract_labels(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
fbank_mean: float = 15.41663,
fbank_std: float = 6.55582,
):
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(fbank, padding_mask)
fbank = fbank.unsqueeze(1)
features = self.patch_embedding(fbank)
features = features.reshape(features.shape[0], features.shape[1], -1)
features = features.transpose(1, 2)
features = self.layer_norm(features)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
x = self.dropout_input(features)
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
)
quantize_input = self.quantize_layer(x)
quantize_feature, embed_loss, embed_ind = self.quantize(quantize_input)
return embed_ind