|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.distributed as distributed |
|
|
|
try: |
|
from einops import rearrange, repeat |
|
except ImportError: |
|
pass |
|
|
|
|
|
def l2norm(t): |
|
return F.normalize(t, p=2, dim=-1) |
|
|
|
|
|
def ema_inplace(moving_avg, new, decay): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
|
|
|
|
def sample_vectors(samples, num): |
|
num_samples, device = samples.shape[0], samples.device |
|
|
|
if num_samples >= num: |
|
indices = torch.randperm(num_samples, device=device)[:num] |
|
else: |
|
indices = torch.randint(0, num_samples, (num,), device=device) |
|
|
|
return samples[indices] |
|
|
|
|
|
def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False): |
|
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device |
|
|
|
means = sample_vectors(samples, num_clusters) |
|
|
|
for _ in range(num_iters): |
|
if use_cosine_sim: |
|
dists = samples @ means.t() |
|
else: |
|
diffs = rearrange(samples, 'n d -> n () d') \ |
|
- rearrange(means, 'c d -> () c d') |
|
dists = -(diffs ** 2).sum(dim=-1) |
|
|
|
buckets = dists.max(dim=-1).indices |
|
bins = torch.bincount(buckets, minlength=num_clusters) |
|
zero_mask = bins == 0 |
|
bins_min_clamped = bins.masked_fill(zero_mask, 1) |
|
|
|
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) |
|
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d=dim), samples) |
|
new_means = new_means / bins_min_clamped[..., None] |
|
|
|
if use_cosine_sim: |
|
new_means = l2norm(new_means) |
|
|
|
means = torch.where(zero_mask[..., None], means, new_means) |
|
|
|
return means, bins |
|
|
|
|
|
class EmbeddingEMA(nn.Module): |
|
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5, kmeans_init=True, codebook_init_path=''): |
|
super().__init__() |
|
self.num_tokens = num_tokens |
|
self.codebook_dim = codebook_dim |
|
self.decay = decay |
|
self.eps = eps |
|
if codebook_init_path == '': |
|
if not kmeans_init: |
|
weight = torch.randn(num_tokens, codebook_dim) |
|
weight = l2norm(weight) |
|
else: |
|
weight = torch.zeros(num_tokens, codebook_dim) |
|
self.register_buffer('initted', torch.Tensor([not kmeans_init])) |
|
else: |
|
print(f"load init codebook weight from {codebook_init_path}") |
|
codebook_ckpt_weight = torch.load(codebook_init_path, map_location='cpu') |
|
weight = codebook_ckpt_weight.clone() |
|
self.register_buffer('initted', torch.Tensor([True])) |
|
|
|
self.weight = nn.Parameter(weight, requires_grad=False) |
|
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False) |
|
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False) |
|
|
|
self.update = True |
|
|
|
@torch.jit.ignore |
|
def init_embed_(self, data): |
|
if self.initted: |
|
return |
|
print("Performing Kemans init for codebook") |
|
embed, cluster_size = kmeans(data, self.num_tokens, 10, use_cosine_sim=True) |
|
self.weight.data.copy_(embed) |
|
self.cluster_size.data.copy_(cluster_size) |
|
self.initted.data.copy_(torch.Tensor([True])) |
|
|
|
def forward(self, embed_id): |
|
return F.embedding(embed_id, self.weight) |
|
|
|
def cluster_size_ema_update(self, new_cluster_size): |
|
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) |
|
|
|
def embed_avg_ema_update(self, new_embed_avg): |
|
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) |
|
|
|
def weight_update(self, num_tokens): |
|
n = self.cluster_size.sum() |
|
smoothed_cluster_size = ( |
|
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n |
|
) |
|
|
|
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) |
|
|
|
self.weight.data.copy_(embed_normalized) |
|
|
|
|
|
def norm_ema_inplace(moving_avg, new, decay): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
moving_avg.data.copy_(l2norm(moving_avg.data)) |
|
|
|
|
|
class NormEMAVectorQuantizer(nn.Module): |
|
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5, |
|
statistic_code_usage=True, kmeans_init=False, codebook_init_path=''): |
|
super().__init__() |
|
self.codebook_dim = embedding_dim |
|
self.num_tokens = n_embed |
|
self.beta = beta |
|
self.decay = decay |
|
|
|
|
|
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps, kmeans_init, codebook_init_path) |
|
|
|
self.statistic_code_usage = statistic_code_usage |
|
if statistic_code_usage: |
|
self.register_buffer('cluster_size', torch.zeros(n_embed)) |
|
if distributed.is_available() and distributed.is_initialized(): |
|
print("ddp is enable, so use ddp_reduce to sync the statistic_code_usage for each gpu!") |
|
self.all_reduce_fn = distributed.all_reduce |
|
else: |
|
self.all_reduce_fn = nn.Identity() |
|
|
|
def reset_cluster_size(self, device): |
|
if self.statistic_code_usage: |
|
self.register_buffer('cluster_size', torch.zeros(self.num_tokens)) |
|
self.cluster_size = self.cluster_size.to(device) |
|
|
|
def forward(self, z): |
|
|
|
|
|
|
|
|
|
z = l2norm(z) |
|
z_flattened = z.reshape(-1, self.codebook_dim) |
|
|
|
self.embedding.init_embed_(z_flattened) |
|
|
|
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ |
|
self.embedding.weight.pow(2).sum(dim=1) - 2 * \ |
|
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) |
|
|
|
encoding_indices = torch.argmin(d, dim=1) |
|
|
|
z_q = self.embedding(encoding_indices).view(z.shape) |
|
|
|
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) |
|
|
|
if not self.training: |
|
with torch.no_grad(): |
|
cluster_size = encodings.sum(0) |
|
self.all_reduce_fn(cluster_size) |
|
ema_inplace(self.cluster_size, cluster_size, self.decay) |
|
|
|
if self.training and self.embedding.update: |
|
|
|
|
|
bins = encodings.sum(0) |
|
self.all_reduce_fn(bins) |
|
|
|
|
|
ema_inplace(self.cluster_size, bins, self.decay) |
|
|
|
zero_mask = (bins == 0) |
|
bins = bins.masked_fill(zero_mask, 1.) |
|
|
|
embed_sum = z_flattened.t() @ encodings |
|
self.all_reduce_fn(embed_sum) |
|
|
|
embed_normalized = (embed_sum / bins.unsqueeze(0)).t() |
|
embed_normalized = l2norm(embed_normalized) |
|
|
|
embed_normalized = torch.where(zero_mask[..., None], self.embedding.weight, |
|
embed_normalized) |
|
norm_ema_inplace(self.embedding.weight, embed_normalized, self.decay) |
|
|
|
|
|
loss = self.beta * F.mse_loss(z_q.detach(), z) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
|
|
|
|
|
|
return z_q, loss, encoding_indices |