a2c-AntBulletEnv-v0 / config.json
tslai1992's picture
Initial commit
f1fda09
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e8016e3cdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e8016e3ce50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e8016e3cee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e8016e3cf70>", "_build": "<function ActorCriticPolicy._build at 0x7e8016e3d000>", "forward": "<function ActorCriticPolicy.forward at 0x7e8016e3d090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e8016e3d120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e8016e3d1b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e8016e3d240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e8016e3d2d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e8016e3d360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e8016e3d3f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e8016e32280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690114543549050532, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIE1iD/Rabs9BjYPP1uyAUBFw38/n2ZLP85rIj8qpb++WWROP9qQlb2S9lQ+ewELv5xCh7+x1fM/kJhkvy2ftD68m3o/DxBoQIX3RDzlol2+i8JTv7PqWr8bdek+Hgvju38C078FBZ8+GRf2Pt/9Hz9GqQQ/3vAXPwc4Az+8uME/FA+jP5hbFz/+Gzo+QbxxPewZTT+Zdnm8rlksPkgvTT7IyF6/78oRQMKb8L4923M+cHQVP2a4hEDFUDK9HpHUvxo+Kb9hUlA/AZ9+PvvTuD5/AtO/BQWfPocnBcDf/R8/FLGBP3lfH7+SUYc+m427P2mgEr/QqVc/oHRnPX0Bor8GKE4/209rvVTArD8FVGC/9Trjvx9LCj87nbK+7AUAP2WK2L1mQf+9027qPqca479zdlG/Qk2NPdRqRz+BmzpAmUobPwUFnz4ZF/Y+hs/Mv0dWOj8kE8s/L+GAvj0o9T9+iRhAj+yrv/rjmz6DQpe+GMNAPs6cNb/Tle++TlTKP1PqAT/mPpM/eII/vhRTgj82X4c/I7kVP8x+Db68UoW/39FSv9zbLT2cesk+8zbRPX8C078FBZ8+GRf2Pt/9Hz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA9Iro2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbRbRPAAAAAAL1+6/AAAAANR2zD0AAAAA5OH0PwAAAACV1Ec9AAAAAAD04T8AAAAAK63xvQAAAAAFkum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ6ePtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOOfUT0AAAAAotPtvwAAAACJnPG9AAAAAIxy8z8AAAAAEvsiPAAAAACRruo/AAAAAIeE8jwAAAAAYfvfvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANbQ3zUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC1AoA8AAAAAIUP/L8AAAAAWaJEPQAAAACgrd0/AAAAAJybar0AAAAA5kn8PwAAAACHncy9AAAAAFq8+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJTJ00AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8dFBPQAAAAAYDPe/AAAAAFQ50rsAAAAAVF/0PwAAAABl7GK9AAAAAC0r7T8AAAAAf0ICvgAAAABijvC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJKcBL+PzWiMAWyUTegDjAF0lEdAm/l9E9dNWXV9lChoBkdAk3wJWaMJhWgHTegDaAhHQJwAWFvhqCZ1fZQoaAZHQJF/GuEEkjZoB03oA2gIR0CcAN5T6zmfdX2UKGgGR0CTHVccU/OdaAdN6ANoCEdAnAUJavA443V9lChoBkdAlfJD1kDp1WgHTegDaAhHQJwVVx3mmtR1fZQoaAZHQJhoqTY/Vy5oB03oA2gIR0CcHC+wC8vmdX2UKGgGR0CXJEK6WgOCaAdN6ANoCEdAnBy1TR6WxHV9lChoBkdAmUBYRqXWv2gHTegDaAhHQJwiEgTyrgh1fZQoaAZHQJoyedK/VRVoB03oA2gIR0CcNy7fpD/mdX2UKGgGR0Caa4rAP/aQaAdN6ANoCEdAnD3bnHNorXV9lChoBkdAmUx2T5ftyGgHTegDaAhHQJw+aipNsWR1fZQoaAZHQJqgm+JxecBoB03oA2gIR0CcQqH4XXRPdX2UKGgGR0CW+wVD8cdYaAdN6ANoCEdAnFKzMFEApHV9lChoBkdAlQZ0Ltu1nmgHTegDaAhHQJxa4Puogmt1fZQoaAZHQJWuc4jrzGxoB03oA2gIR0CcW7zgdfb9dX2UKGgGR0CVrXw9aEBbaAdN6ANoCEdAnGJpEDyOJnV9lChoBkdAj1UiROk+HWgHTegDaAhHQJx0yXUpd8l1fZQoaAZHQJkQw2Q4jr1oB03oA2gIR0Cce6DYRNAUdX2UKGgGR0CXX6tkWhysaAdN6ANoCEdAnHwoNI9TxXV9lChoBkdAmZ7tmpVCHGgHTegDaAhHQJyAQSnLq2V1fZQoaAZHQJWKeyWzF/BoB03oA2gIR0CckQcSoOx0dX2UKGgGR0CZbUpoK2KEaAdN6ANoCEdAnJvC6xxDLXV9lChoBkdAlxXiVfNRnGgHTegDaAhHQJycqYu01Il1fZQoaAZHQJcQWJFb3XZoB03oA2gIR0CcoiZvUBn0dX2UKGgGR0CYSGNhE0BPaAdN6ANoCEdAnLJ4pUgjhXV9lChoBkdAkrAOBxxT9GgHTegDaAhHQJy5Gogmqo91fZQoaAZHQJgzlCswL3NoB03oA2gIR0CcuZ0iQkondX2UKGgGR0CZBIfjjrAyaAdN6ANoCEdAnL26PbO/tnV9lChoBkdAlM7W0qpcX2gHTegDaAhHQJzRG8dxQzl1fZQoaAZHQJdDToW56MRoB03oA2gIR0Cc2rA/LTx5dX2UKGgGR0CVeE1ndweeaAdN6ANoCEdAnNs5SaVlgHV9lChoBkdAkZQPOhTOxGgHTegDaAhHQJzfcbJfYz11fZQoaAZHQJnY4w+MZP5oB03oA2gIR0Cc77ldTo+wdX2UKGgGR0CV1uWU8mrsaAdN6ANoCEdAnPaa7I1cdHV9lChoBkdAmpobFXJYDGgHTegDaAhHQJz3IoiLVFx1fZQoaAZHQJoRckWykbhoB03oA2gIR0Cc+3z+m3vydX2UKGgGR0CYMhCaZx7zaAdN6ANoCEdAnRHJiVjZtnV9lChoBkdAm7muhkAggWgHTegDaAhHQJ0YrdP+GXZ1fZQoaAZHQJopcgA6uGNoB03oA2gIR0CdGTNYKYzBdX2UKGgGR0CcmnEK3NLUaAdN6ANoCEdAnR1Vs54nnnV9lChoBkdAmpgkBwMpgGgHTegDaAhHQJ0tyb6P8yh1fZQoaAZHQJrnB3Roh6loB03oA2gIR0CdNL2Dg62fdX2UKGgGR0CYOa7wazeGaAdN6ANoCEdAnTVEG/vfCXV9lChoBkdAlIOjXrdFfGgHTegDaAhHQJ06Jg3Lmp51fZQoaAZHQJwj2wkgOjJoB03oA2gIR0CdT8Pe54GEdX2UKGgGR0CYCdax5cC6aAdN6ANoCEdAnVac/UvwmXV9lChoBkdAmdems7uDz2gHTegDaAhHQJ1XJkd3jdZ1fZQoaAZHQJYYVZid8RdoB03oA2gIR0CdW2SamXPadX2UKGgGR0CbMKUD+zdDaAdN6ANoCEdAnWt8rI5o5HV9lChoBkdAmWlcbaRISWgHTegDaAhHQJ1zTk8zQ/p1fZQoaAZHQJqxuHYYixFoB03oA2gIR0CddCFaB7NTdX2UKGgGR0CZOI32VVxTaAdN6ANoCEdAnXqO5vtMPHV9lChoBkdAlaQ1n7Hhj2gHTegDaAhHQJ2Nzyc0+C91fZQoaAZHQJetqMNtqHpoB03oA2gIR0CdlN0fozN2dX2UKGgGR0CUsOiExqO+aAdN6ANoCEdAnZVsFINEw3V9lChoBkdAmQGNZaFEiWgHTegDaAhHQJ2ZpbSqlxh1fZQoaAZHQJcYWXC0ngJoB03oA2gIR0CdqYWHUMG5dX2UKGgGR0Cdbr5SWJJoaAdN6ANoCEdAnbP1eBxxUHV9lChoBkdAmG6s274BWGgHTegDaAhHQJ2035uZThp1fZQoaAZHQJyGl4keIVNoB03oA2gIR0CdursKLKmsdX2UKGgGR0CclPQRwqAjaAdN6ANoCEdAncs6u0TlDHV9lChoBkdAnen9jLB9C2gHTegDaAhHQJ3SLsLORkp1fZQoaAZHQJiILLV4HHFoB03oA2gIR0Cd0rt0mtyQdX2UKGgGR0CZuS5AQg9vaAdN6ANoCEdAndcJZ0Syt3V9lChoBkdAmNThWcSXdGgHTegDaAhHQJ3qaLjxTbZ1fZQoaAZHQJYurskY4yZoB03oA2gIR0Cd9GyBClabdX2UKGgGR0CbJMebNKRMaAdN6ANoCEdAnfT3r2QGOnV9lChoBkdAmE3zvd/KAGgHTegDaAhHQJ35L8cdYGN1fZQoaAZHQJuVqNdZ7oloB03oA2gIR0CeCUX3xnWbdX2UKGgGR0Ca0xh1DBuXaAdN6ANoCEdAnhAoOc2BKHV9lChoBkdAm5BVvQ4S6GgHTegDaAhHQJ4QrmaH9FZ1fZQoaAZHQJ3SDHJcPe5oB03oA2gIR0CeFNazNUwSdX2UKGgGR0CeChShJyyVaAdN6ANoCEdAnise6iCaqnV9lChoBkdAmp41P8AJcGgHTegDaAhHQJ4xzbFjurp1fZQoaAZHQJ5q/XCj1wpoB03oA2gIR0CeMluCwr1/dX2UKGgGR0CYUX2r4nF6aAdN6ANoCEdAnjZoRqXWv3V9lChoBkdAmzFBl18stmgHTegDaAhHQJ5GeMbWEsd1fZQoaAZHQJrVYFaB7NVoB03oA2gIR0CeTVQKa5PNdX2UKGgGR0CbLYAu7HyVaAdN6ANoCEdAnk3Z/XoTwnV9lChoBkdAnAe7N8ma6WgHTegDaAhHQJ5SAXwb2lF1fZQoaAZHQJpTIUJv5xloB03oA2gIR0CeaGyquKXOdX2UKGgGR0Ca77PHT7VKaAdN6ANoCEdAnm8vwZwXInV9lChoBkdAmwufsZ5zHWgHTegDaAhHQJ5vvDhtLth1fZQoaAZHQJtp4+PikwhoB03oA2gIR0Cec9R6F/QTdX2UKGgGR0Cb4P5Ke05VaAdN6ANoCEdAnoQN2TxG2HV9lChoBkdAm/me2JBPbmgHTegDaAhHQJ6LHdVNpM91fZQoaAZHQJfYIU7CBPNoB03oA2gIR0Cei/6KtPpIdX2UKGgGR0CcCBC7K7qZaAdN6ANoCEdAnpJ4BvJiiXV9lChoBkdAkwOdw3o9tGgHTegDaAhHQJ6mg68xsVN1fZQoaAZHQJnNGvnr6cloB03oA2gIR0CerWQsf7rLdX2UKGgGR0CZ+kGvwEyMaAdN6ANoCEdAnq3pv99+gHV9lChoBkdAmSQUF4cFQmgHTegDaAhHQJ6yLt3OfNB1fZQoaAZHQJF5Dlp48lpoB03oA2gIR0CewraOgg5jdX2UKGgGR0CVyYv8qFyraAdN6ANoCEdAns15jx0+1XV9lChoBkdAlw+n+MqBmWgHTegDaAhHQJ7OYTqSowV1fZQoaAZHQJnD7MbFS89oB03oA2gIR0Ce1NnKnvUjdX2UKGgGR0CWIXXtShrWaAdN6ANoCEdAnuWpf2K2rnV9lChoBkdAl8xnlnyup2gHTegDaAhHQJ7tE5vLowF1fZQoaAZHQJpwbmRvFWJoB03oA2gIR0Ce7aq5sj3VdX2UKGgGR0CYW8C2tuDSaAdN6ANoCEdAnvIk1IiC8XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}