tslai1992 commited on
Commit
34a53ab
·
1 Parent(s): 98c828b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.15 +/- 1.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71553866c527328df7d95cc751743dca9a7e3f01c5956a3b48227452092d58ce
3
+ size 108088
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e8016e3d510>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e8016e323c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 506416,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1690116686192490435,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoOs3P8pcMj+Rn5E/plqjP2BOoT/zeqo+O3VKv7gNL7/3wKi93kykP5bkRj/ORMk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArtgIvsfWlj9pbUs/kJKCPyzAvD9S6Cg/q65zv1FE576rxMK+43eHPpK4Uj97HNM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACg6zc/ylwyP5GfkT/C/Qq+FYCevlsfBr2mWqM/YE6hP/N6qj5quS4/VZPHPqISVz87dUq/uA0vv/fAqL25Buo77GOyPz0yJr7eTKQ/luRGP85EyT+jDC8/6qntvz47Lz+UaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.7184391 0.69672835 1.1376821 ]\n [ 1.2762039 1.2602043 0.33296928]\n [-0.7908513 -0.6838031 -0.0823993 ]\n [ 1.2835958 0.77692544 1.5724123 ]]",
38
+ "desired_goal": "[[-0.13363907 1.1784295 0.7946382 ]\n [ 1.0200977 1.4746146 0.6597949 ]\n [-0.951884 -0.4516931 -0.3804067 ]\n [ 0.26458654 0.8231288 1.6493067 ]]",
39
+ "observation": "[[ 0.7184391 0.69672835 1.1376821 -0.13573363 -0.30957094 -0.03274475]\n [ 1.2762039 1.2602043 0.33296928 0.6825167 0.38979593 0.84012806]\n [-0.7908513 -0.6838031 -0.0823993 0.00714191 1.3936744 -0.16230102]\n [ 1.2835958 0.77692544 1.5724123 0.6837866 -1.8567479 0.6844977 ]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzLDlvarr3r3L6qw9Kfa0vQolpb0fhQY9xlQVvq0TCz6hjHM+WImMPWN4qbtv5BI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.11215362 -0.10884793 0.08443221]\n [-0.08836014 -0.08063705 0.0328418 ]\n [-0.1458312 0.13581724 0.23784114]\n [ 0.06862134 -0.00517182 0.14344953]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.49360000000000004,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4NdIEoQr+r+UhpRSlIwBbJRLMowBdJRHQJmTpJcxCY11fZQoaAZoCWgPQwim8naE08Lwv5SGlFKUaBVLMmgWR0CZkx4bS7XhdX2UKGgGaAloD0MIPKBsyhXe9b+UhpRSlGgVSzJoFkdAmZKTps41g3V9lChoBmgJaA9DCNvC81KxMRHAlIaUUpRoFUsyaBZHQJmSCZZ0Syt1fZQoaAZoCWgPQwgtJ6H0hXARwJSGlFKUaBVLMmgWR0CZlgUMG5c1dX2UKGgGaAloD0MIx549l6nJEsCUhpRSlGgVSzJoFkdAmZV+gxrSE3V9lChoBmgJaA9DCL+CNGPRtPG/lIaUUpRoFUsyaBZHQJmU8+MZP2x1fZQoaAZoCWgPQwhJKlPMQVARwJSGlFKUaBVLMmgWR0CZlGm6oVEedX2UKGgGaAloD0MInuqQm+HGBsCUhpRSlGgVSzJoFkdAmZhzJ2dNFnV9lChoBmgJaA9DCBkg0QSKeADAlIaUUpRoFUsyaBZHQJmX7O2RaHN1fZQoaAZoCWgPQwgrbtxifu4OwJSGlFKUaBVLMmgWR0CZl2Ltu1nedX2UKGgGaAloD0MI+bziqUca/b+UhpRSlGgVSzJoFkdAmZbY7q6e5HV9lChoBmgJaA9DCGQHlbiOsfm/lIaUUpRoFUsyaBZHQJma69L6DXh1fZQoaAZoCWgPQwhh304iwm8ewJSGlFKUaBVLMmgWR0CZmmVZcLSedX2UKGgGaAloD0MIAdpWs8545r+UhpRSlGgVSzJoFkdAmZna77Kq43V9lChoBmgJaA9DCDV5ymq63gXAlIaUUpRoFUsyaBZHQJmZULqlgtx1fZQoaAZoCWgPQwj7rgj+t6ISwJSGlFKUaBVLMmgWR0CZnVtcfNiZdX2UKGgGaAloD0MIswjFVtCUDsCUhpRSlGgVSzJoFkdAmZzVIy0rsnV9lChoBmgJaA9DCFeVfVcEP/C/lIaUUpRoFUsyaBZHQJmcSyPdVNp1fZQoaAZoCWgPQwjlDpvIzIXmv5SGlFKUaBVLMmgWR0CZm8EqDsdDdX2UKGgGaAloD0MIoBhZMsdyAsCUhpRSlGgVSzJoFkdAmZ/MEvCdjHV9lChoBmgJaA9DCP1JfO4Ee/y/lIaUUpRoFUsyaBZHQJmfRaLXL/11fZQoaAZoCWgPQwjCMGDJVez1v5SGlFKUaBVLMmgWR0CZnrseXAuadX2UKGgGaAloD0MIOfBquTODE8CUhpRSlGgVSzJoFkdAmZ4w08/2TXV9lChoBmgJaA9DCD9z1qcck++/lIaUUpRoFUsyaBZHQJmiOokzGgl1fZQoaAZoCWgPQwjSUnk7wmn6v5SGlFKUaBVLMmgWR0CZobOuaF23dX2UKGgGaAloD0MI0y6mme7VA8CUhpRSlGgVSzJoFkdAmaEpSFXaJ3V9lChoBmgJaA9DCF980R4vZPe/lIaUUpRoFUsyaBZHQJmgnsHB1tB1fZQoaAZoCWgPQwhN+KV+3jQKwJSGlFKUaBVLMmgWR0CZpKHDrJKbdX2UKGgGaAloD0MICI7LuKlBBMCUhpRSlGgVSzJoFkdAmaQbQ1JlKHV9lChoBmgJaA9DCNBHGXEBKBLAlIaUUpRoFUsyaBZHQJmjkPJ7sv91fZQoaAZoCWgPQwilLEMc60IIwJSGlFKUaBVLMmgWR0CZowaURnOCdX2UKGgGaAloD0MIHAbzV8jc77+UhpRSlGgVSzJoFkdAmacHYL9deXV9lChoBmgJaA9DCF/v/nivugDAlIaUUpRoFUsyaBZHQJmmgd5prUN1fZQoaAZoCWgPQwi+9WG9UWv2v5SGlFKUaBVLMmgWR0CZpfmoBJZodX2UKGgGaAloD0MIBWucTUeA77+UhpRSlGgVSzJoFkdAmaVxttQ9BHV9lChoBmgJaA9DCA5ORL+23gTAlIaUUpRoFUsyaBZHQJmpibe/Ho51fZQoaAZoCWgPQwix3NJqSNz2v5SGlFKUaBVLMmgWR0CZqQMhX8wYdX2UKGgGaAloD0MILZPheD5D+L+UhpRSlGgVSzJoFkdAmah4jjaPCHV9lChoBmgJaA9DCBr7ko0H6xXAlIaUUpRoFUsyaBZHQJmn7kgfU4J1fZQoaAZoCWgPQwhDjq1nCEcMwJSGlFKUaBVLMmgWR0CZq+04zabndX2UKGgGaAloD0MIhVs+kpKeBcCUhpRSlGgVSzJoFkdAmatm9pRGdHV9lChoBmgJaA9DCEqbqntk0wvAlIaUUpRoFUsyaBZHQJmq3HFPznR1fZQoaAZoCWgPQwi0IJT3cbT3v5SGlFKUaBVLMmgWR0CZqlHZ9NN8dX2UKGgGaAloD0MIIlUUr7I2C8CUhpRSlGgVSzJoFkdAma4+67NB4XV9lChoBmgJaA9DCKhWX10VqOi/lIaUUpRoFUsyaBZHQJmtuG8Empl1fZQoaAZoCWgPQwgBwLFnz2Xqv5SGlFKUaBVLMmgWR0CZrS37UG3XdX2UKGgGaAloD0MIgZVDi2xHAcCUhpRSlGgVSzJoFkdAmayjJuEVWXV9lChoBmgJaA9DCJASu7a3W+2/lIaUUpRoFUsyaBZHQJmw2LiuMdd1fZQoaAZoCWgPQwi1GDxM+2byv5SGlFKUaBVLMmgWR0CZsFJfICEIdX2UKGgGaAloD0MIAMXIkjkWB8CUhpRSlGgVSzJoFkdAma/JAMUh3nV9lChoBmgJaA9DCL9+iA0WzgfAlIaUUpRoFUsyaBZHQJmvPq3VkMF1fZQoaAZoCWgPQwi8IvjfSvYNwJSGlFKUaBVLMmgWR0CZsyxUNrj6dX2UKGgGaAloD0MItVGdDmQ99r+UhpRSlGgVSzJoFkdAmbKlbNbC8HV9lChoBmgJaA9DCMLfL2ZLlvG/lIaUUpRoFUsyaBZHQJmyGuPmxMZ1fZQoaAZoCWgPQwg10lJ5O/IRwJSGlFKUaBVLMmgWR0CZsZDL8rI6dX2UKGgGaAloD0MIo5BkVu9QAsCUhpRSlGgVSzJoFkdAmbWU6kqMFXV9lChoBmgJaA9DCDIEAMeevei/lIaUUpRoFUsyaBZHQJm1DlkpZwJ1fZQoaAZoCWgPQwi+hXXj3RH8v5SGlFKUaBVLMmgWR0CZtIPykKu0dX2UKGgGaAloD0MIUrXdBN+0D8CUhpRSlGgVSzJoFkdAmbP5vtMPBnV9lChoBmgJaA9DCGX9ZmK6UPa/lIaUUpRoFUsyaBZHQJm38ZdfLLZ1fZQoaAZoCWgPQwgUQDGyZG4EwJSGlFKUaBVLMmgWR0CZt2rXlKbsdX2UKGgGaAloD0MIP4wQHm2c97+UhpRSlGgVSzJoFkdAmbbf7aZhKHV9lChoBmgJaA9DCKIkJNI2ng3AlIaUUpRoFUsyaBZHQJm2VcjZ+QV1fZQoaAZoCWgPQwgt6pPcYTMCwJSGlFKUaBVLMmgWR0CZuppr1uiwdX2UKGgGaAloD0MIDVNb6iAfEcCUhpRSlGgVSzJoFkdAmboVjAi3X3V9lChoBmgJaA9DCHS2gNB6ePC/lIaUUpRoFUsyaBZHQJm5jMPjGT91fZQoaAZoCWgPQwjFknL3OX4IwJSGlFKUaBVLMmgWR0CZuQQnhKlIdX2UKGgGaAloD0MITFMEOL1LBsCUhpRSlGgVSzJoFkdAmb511B+nZXV9lChoBmgJaA9DCIIBhA8lmvq/lIaUUpRoFUsyaBZHQJm98P7N0Nl1fZQoaAZoCWgPQwjh8e1dg77nv5SGlFKUaBVLMmgWR0CZvWf2bobGdX2UKGgGaAloD0MIqyUd5WBWBMCUhpRSlGgVSzJoFkdAmbzf2oNutXV9lChoBmgJaA9DCM2Pv7SoD/S/lIaUUpRoFUsyaBZHQJnCemhufmN1fZQoaAZoCWgPQwiX5lYIqzEawJSGlFKUaBVLMmgWR0CZwfco6S1WdX2UKGgGaAloD0MI7iO3Jt02EMCUhpRSlGgVSzJoFkdAmcFuso2GZnV9lChoBmgJaA9DCDqVDABVXBPAlIaUUpRoFUsyaBZHQJnA5fUnXup1fZQoaAZoCWgPQwiVK7zLRVwBwJSGlFKUaBVLMmgWR0CZxqkCmuTzdX2UKGgGaAloD0MIieyDLAsmCMCUhpRSlGgVSzJoFkdAmcYkKzAvc3V9lChoBmgJaA9DCKOP+YBAZ+2/lIaUUpRoFUsyaBZHQJnFm7L+xW11fZQoaAZoCWgPQwhDc51GWpoYwJSGlFKUaBVLMmgWR0CZxRPUaybAdX2UKGgGaAloD0MIGHjuPVzCEsCUhpRSlGgVSzJoFkdAmcphaHKwIXV9lChoBmgJaA9DCHZQiesYNwvAlIaUUpRoFUsyaBZHQJnJ2uIRAbB1fZQoaAZoCWgPQwhjmX6JeKsZwJSGlFKUaBVLMmgWR0CZyVBEa2nbdX2UKGgGaAloD0MI/wkuVtTAAsCUhpRSlGgVSzJoFkdAmcjGDL8rJHV9lChoBmgJaA9DCAfOGVHaW/u/lIaUUpRoFUsyaBZHQJnNJ07r9l51fZQoaAZoCWgPQwit+8dCdPgZwJSGlFKUaBVLMmgWR0CZzKKQaJhwdX2UKGgGaAloD0MIGVWGcTeIAcCUhpRSlGgVSzJoFkdAmcwYUeuFH3V9lChoBmgJaA9DCJV+wtmtZfe/lIaUUpRoFUsyaBZHQJnLjiOvMbF1fZQoaAZoCWgPQwiR8pNqn24MwJSGlFKUaBVLMmgWR0CZz7SAYpDvdX2UKGgGaAloD0MITfkQVI0+A8CUhpRSlGgVSzJoFkdAmc8t/SYw7HV9lChoBmgJaA9DCEcgXtcvWAvAlIaUUpRoFUsyaBZHQJnOo1Nxlxx1fZQoaAZoCWgPQwi2uwfovlwLwJSGlFKUaBVLMmgWR0CZzhkRBeHBdX2UKGgGaAloD0MIniXICKiwAMCUhpRSlGgVSzJoFkdAmdI+B+Wnj3V9lChoBmgJaA9DCNRgGoaP6A3AlIaUUpRoFUsyaBZHQJnRt5JK8L91fZQoaAZoCWgPQwiUFFgAUxYSwJSGlFKUaBVLMmgWR0CZ0S0fHPu5dX2UKGgGaAloD0MICacFL/oK9b+UhpRSlGgVSzJoFkdAmdCjJ6po9XV9lChoBmgJaA9DCOs2qP3WPhDAlIaUUpRoFUsyaBZHQJnUtZSvTw51fZQoaAZoCWgPQwiOOjquRjb2v5SGlFKUaBVLMmgWR0CZ1C7u2JBPdX2UKGgGaAloD0MIkiBcAYX6AsCUhpRSlGgVSzJoFkdAmdOkh3aBZ3V9lChoBmgJaA9DCD82yY/49Q/AlIaUUpRoFUsyaBZHQJnTGn889wF1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 25320,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:850b3070d5ad2dc5ff7787222c0958c8662dc93a52eeb7c7947c4c0ed271c0ab
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31911e7dcd8527e6dd0e04627c9253b08ab06a993eb04825653e4ee8d9c19fb7
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e8016e3d510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e8016e323c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 506416, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690116686192490435, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoOs3P8pcMj+Rn5E/plqjP2BOoT/zeqo+O3VKv7gNL7/3wKi93kykP5bkRj/ORMk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArtgIvsfWlj9pbUs/kJKCPyzAvD9S6Cg/q65zv1FE576rxMK+43eHPpK4Uj97HNM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACg6zc/ylwyP5GfkT/C/Qq+FYCevlsfBr2mWqM/YE6hP/N6qj5quS4/VZPHPqISVz87dUq/uA0vv/fAqL25Buo77GOyPz0yJr7eTKQ/luRGP85EyT+jDC8/6qntvz47Lz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.7184391 0.69672835 1.1376821 ]\n [ 1.2762039 1.2602043 0.33296928]\n [-0.7908513 -0.6838031 -0.0823993 ]\n [ 1.2835958 0.77692544 1.5724123 ]]", "desired_goal": "[[-0.13363907 1.1784295 0.7946382 ]\n [ 1.0200977 1.4746146 0.6597949 ]\n [-0.951884 -0.4516931 -0.3804067 ]\n [ 0.26458654 0.8231288 1.6493067 ]]", "observation": "[[ 0.7184391 0.69672835 1.1376821 -0.13573363 -0.30957094 -0.03274475]\n [ 1.2762039 1.2602043 0.33296928 0.6825167 0.38979593 0.84012806]\n [-0.7908513 -0.6838031 -0.0823993 0.00714191 1.3936744 -0.16230102]\n [ 1.2835958 0.77692544 1.5724123 0.6837866 -1.8567479 0.6844977 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzLDlvarr3r3L6qw9Kfa0vQolpb0fhQY9xlQVvq0TCz6hjHM+WImMPWN4qbtv5BI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11215362 -0.10884793 0.08443221]\n [-0.08836014 -0.08063705 0.0328418 ]\n [-0.1458312 0.13581724 0.23784114]\n [ 0.06862134 -0.00517182 0.14344953]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.49360000000000004, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4NdIEoQr+r+UhpRSlIwBbJRLMowBdJRHQJmTpJcxCY11fZQoaAZoCWgPQwim8naE08Lwv5SGlFKUaBVLMmgWR0CZkx4bS7XhdX2UKGgGaAloD0MIPKBsyhXe9b+UhpRSlGgVSzJoFkdAmZKTps41g3V9lChoBmgJaA9DCNvC81KxMRHAlIaUUpRoFUsyaBZHQJmSCZZ0Syt1fZQoaAZoCWgPQwgtJ6H0hXARwJSGlFKUaBVLMmgWR0CZlgUMG5c1dX2UKGgGaAloD0MIx549l6nJEsCUhpRSlGgVSzJoFkdAmZV+gxrSE3V9lChoBmgJaA9DCL+CNGPRtPG/lIaUUpRoFUsyaBZHQJmU8+MZP2x1fZQoaAZoCWgPQwhJKlPMQVARwJSGlFKUaBVLMmgWR0CZlGm6oVEedX2UKGgGaAloD0MInuqQm+HGBsCUhpRSlGgVSzJoFkdAmZhzJ2dNFnV9lChoBmgJaA9DCBkg0QSKeADAlIaUUpRoFUsyaBZHQJmX7O2RaHN1fZQoaAZoCWgPQwgrbtxifu4OwJSGlFKUaBVLMmgWR0CZl2Ltu1nedX2UKGgGaAloD0MI+bziqUca/b+UhpRSlGgVSzJoFkdAmZbY7q6e5HV9lChoBmgJaA9DCGQHlbiOsfm/lIaUUpRoFUsyaBZHQJma69L6DXh1fZQoaAZoCWgPQwhh304iwm8ewJSGlFKUaBVLMmgWR0CZmmVZcLSedX2UKGgGaAloD0MIAdpWs8545r+UhpRSlGgVSzJoFkdAmZna77Kq43V9lChoBmgJaA9DCDV5ymq63gXAlIaUUpRoFUsyaBZHQJmZULqlgtx1fZQoaAZoCWgPQwj7rgj+t6ISwJSGlFKUaBVLMmgWR0CZnVtcfNiZdX2UKGgGaAloD0MIswjFVtCUDsCUhpRSlGgVSzJoFkdAmZzVIy0rsnV9lChoBmgJaA9DCFeVfVcEP/C/lIaUUpRoFUsyaBZHQJmcSyPdVNp1fZQoaAZoCWgPQwjlDpvIzIXmv5SGlFKUaBVLMmgWR0CZm8EqDsdDdX2UKGgGaAloD0MIoBhZMsdyAsCUhpRSlGgVSzJoFkdAmZ/MEvCdjHV9lChoBmgJaA9DCP1JfO4Ee/y/lIaUUpRoFUsyaBZHQJmfRaLXL/11fZQoaAZoCWgPQwjCMGDJVez1v5SGlFKUaBVLMmgWR0CZnrseXAuadX2UKGgGaAloD0MIOfBquTODE8CUhpRSlGgVSzJoFkdAmZ4w08/2TXV9lChoBmgJaA9DCD9z1qcck++/lIaUUpRoFUsyaBZHQJmiOokzGgl1fZQoaAZoCWgPQwjSUnk7wmn6v5SGlFKUaBVLMmgWR0CZobOuaF23dX2UKGgGaAloD0MI0y6mme7VA8CUhpRSlGgVSzJoFkdAmaEpSFXaJ3V9lChoBmgJaA9DCF980R4vZPe/lIaUUpRoFUsyaBZHQJmgnsHB1tB1fZQoaAZoCWgPQwhN+KV+3jQKwJSGlFKUaBVLMmgWR0CZpKHDrJKbdX2UKGgGaAloD0MICI7LuKlBBMCUhpRSlGgVSzJoFkdAmaQbQ1JlKHV9lChoBmgJaA9DCNBHGXEBKBLAlIaUUpRoFUsyaBZHQJmjkPJ7sv91fZQoaAZoCWgPQwilLEMc60IIwJSGlFKUaBVLMmgWR0CZowaURnOCdX2UKGgGaAloD0MIHAbzV8jc77+UhpRSlGgVSzJoFkdAmacHYL9deXV9lChoBmgJaA9DCF/v/nivugDAlIaUUpRoFUsyaBZHQJmmgd5prUN1fZQoaAZoCWgPQwi+9WG9UWv2v5SGlFKUaBVLMmgWR0CZpfmoBJZodX2UKGgGaAloD0MIBWucTUeA77+UhpRSlGgVSzJoFkdAmaVxttQ9BHV9lChoBmgJaA9DCA5ORL+23gTAlIaUUpRoFUsyaBZHQJmpibe/Ho51fZQoaAZoCWgPQwix3NJqSNz2v5SGlFKUaBVLMmgWR0CZqQMhX8wYdX2UKGgGaAloD0MILZPheD5D+L+UhpRSlGgVSzJoFkdAmah4jjaPCHV9lChoBmgJaA9DCBr7ko0H6xXAlIaUUpRoFUsyaBZHQJmn7kgfU4J1fZQoaAZoCWgPQwhDjq1nCEcMwJSGlFKUaBVLMmgWR0CZq+04zabndX2UKGgGaAloD0MIhVs+kpKeBcCUhpRSlGgVSzJoFkdAmatm9pRGdHV9lChoBmgJaA9DCEqbqntk0wvAlIaUUpRoFUsyaBZHQJmq3HFPznR1fZQoaAZoCWgPQwi0IJT3cbT3v5SGlFKUaBVLMmgWR0CZqlHZ9NN8dX2UKGgGaAloD0MIIlUUr7I2C8CUhpRSlGgVSzJoFkdAma4+67NB4XV9lChoBmgJaA9DCKhWX10VqOi/lIaUUpRoFUsyaBZHQJmtuG8Empl1fZQoaAZoCWgPQwgBwLFnz2Xqv5SGlFKUaBVLMmgWR0CZrS37UG3XdX2UKGgGaAloD0MIgZVDi2xHAcCUhpRSlGgVSzJoFkdAmayjJuEVWXV9lChoBmgJaA9DCJASu7a3W+2/lIaUUpRoFUsyaBZHQJmw2LiuMdd1fZQoaAZoCWgPQwi1GDxM+2byv5SGlFKUaBVLMmgWR0CZsFJfICEIdX2UKGgGaAloD0MIAMXIkjkWB8CUhpRSlGgVSzJoFkdAma/JAMUh3nV9lChoBmgJaA9DCL9+iA0WzgfAlIaUUpRoFUsyaBZHQJmvPq3VkMF1fZQoaAZoCWgPQwi8IvjfSvYNwJSGlFKUaBVLMmgWR0CZsyxUNrj6dX2UKGgGaAloD0MItVGdDmQ99r+UhpRSlGgVSzJoFkdAmbKlbNbC8HV9lChoBmgJaA9DCMLfL2ZLlvG/lIaUUpRoFUsyaBZHQJmyGuPmxMZ1fZQoaAZoCWgPQwg10lJ5O/IRwJSGlFKUaBVLMmgWR0CZsZDL8rI6dX2UKGgGaAloD0MIo5BkVu9QAsCUhpRSlGgVSzJoFkdAmbWU6kqMFXV9lChoBmgJaA9DCDIEAMeevei/lIaUUpRoFUsyaBZHQJm1DlkpZwJ1fZQoaAZoCWgPQwi+hXXj3RH8v5SGlFKUaBVLMmgWR0CZtIPykKu0dX2UKGgGaAloD0MIUrXdBN+0D8CUhpRSlGgVSzJoFkdAmbP5vtMPBnV9lChoBmgJaA9DCGX9ZmK6UPa/lIaUUpRoFUsyaBZHQJm38ZdfLLZ1fZQoaAZoCWgPQwgUQDGyZG4EwJSGlFKUaBVLMmgWR0CZt2rXlKbsdX2UKGgGaAloD0MIP4wQHm2c97+UhpRSlGgVSzJoFkdAmbbf7aZhKHV9lChoBmgJaA9DCKIkJNI2ng3AlIaUUpRoFUsyaBZHQJm2VcjZ+QV1fZQoaAZoCWgPQwgt6pPcYTMCwJSGlFKUaBVLMmgWR0CZuppr1uiwdX2UKGgGaAloD0MIDVNb6iAfEcCUhpRSlGgVSzJoFkdAmboVjAi3X3V9lChoBmgJaA9DCHS2gNB6ePC/lIaUUpRoFUsyaBZHQJm5jMPjGT91fZQoaAZoCWgPQwjFknL3OX4IwJSGlFKUaBVLMmgWR0CZuQQnhKlIdX2UKGgGaAloD0MITFMEOL1LBsCUhpRSlGgVSzJoFkdAmb511B+nZXV9lChoBmgJaA9DCIIBhA8lmvq/lIaUUpRoFUsyaBZHQJm98P7N0Nl1fZQoaAZoCWgPQwjh8e1dg77nv5SGlFKUaBVLMmgWR0CZvWf2bobGdX2UKGgGaAloD0MIqyUd5WBWBMCUhpRSlGgVSzJoFkdAmbzf2oNutXV9lChoBmgJaA9DCM2Pv7SoD/S/lIaUUpRoFUsyaBZHQJnCemhufmN1fZQoaAZoCWgPQwiX5lYIqzEawJSGlFKUaBVLMmgWR0CZwfco6S1WdX2UKGgGaAloD0MI7iO3Jt02EMCUhpRSlGgVSzJoFkdAmcFuso2GZnV9lChoBmgJaA9DCDqVDABVXBPAlIaUUpRoFUsyaBZHQJnA5fUnXup1fZQoaAZoCWgPQwiVK7zLRVwBwJSGlFKUaBVLMmgWR0CZxqkCmuTzdX2UKGgGaAloD0MIieyDLAsmCMCUhpRSlGgVSzJoFkdAmcYkKzAvc3V9lChoBmgJaA9DCKOP+YBAZ+2/lIaUUpRoFUsyaBZHQJnFm7L+xW11fZQoaAZoCWgPQwhDc51GWpoYwJSGlFKUaBVLMmgWR0CZxRPUaybAdX2UKGgGaAloD0MIGHjuPVzCEsCUhpRSlGgVSzJoFkdAmcphaHKwIXV9lChoBmgJaA9DCHZQiesYNwvAlIaUUpRoFUsyaBZHQJnJ2uIRAbB1fZQoaAZoCWgPQwhjmX6JeKsZwJSGlFKUaBVLMmgWR0CZyVBEa2nbdX2UKGgGaAloD0MI/wkuVtTAAsCUhpRSlGgVSzJoFkdAmcjGDL8rJHV9lChoBmgJaA9DCAfOGVHaW/u/lIaUUpRoFUsyaBZHQJnNJ07r9l51fZQoaAZoCWgPQwit+8dCdPgZwJSGlFKUaBVLMmgWR0CZzKKQaJhwdX2UKGgGaAloD0MIGVWGcTeIAcCUhpRSlGgVSzJoFkdAmcwYUeuFH3V9lChoBmgJaA9DCJV+wtmtZfe/lIaUUpRoFUsyaBZHQJnLjiOvMbF1fZQoaAZoCWgPQwiR8pNqn24MwJSGlFKUaBVLMmgWR0CZz7SAYpDvdX2UKGgGaAloD0MITfkQVI0+A8CUhpRSlGgVSzJoFkdAmc8t/SYw7HV9lChoBmgJaA9DCEcgXtcvWAvAlIaUUpRoFUsyaBZHQJnOo1Nxlxx1fZQoaAZoCWgPQwi2uwfovlwLwJSGlFKUaBVLMmgWR0CZzhkRBeHBdX2UKGgGaAloD0MIniXICKiwAMCUhpRSlGgVSzJoFkdAmdI+B+Wnj3V9lChoBmgJaA9DCNRgGoaP6A3AlIaUUpRoFUsyaBZHQJnRt5JK8L91fZQoaAZoCWgPQwiUFFgAUxYSwJSGlFKUaBVLMmgWR0CZ0S0fHPu5dX2UKGgGaAloD0MICacFL/oK9b+UhpRSlGgVSzJoFkdAmdCjJ6po9XV9lChoBmgJaA9DCOs2qP3WPhDAlIaUUpRoFUsyaBZHQJnUtZSvTw51fZQoaAZoCWgPQwiOOjquRjb2v5SGlFKUaBVLMmgWR0CZ1C7u2JBPdX2UKGgGaAloD0MIkiBcAYX6AsCUhpRSlGgVSzJoFkdAmdOkh3aBZ3V9lChoBmgJaA9DCD82yY/49Q/AlIaUUpRoFUsyaBZHQJnTGn889wF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25320, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (360 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.1481956059113143, "std_reward": 1.1645511918364213, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-23T13:19:11.324413"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdb796fd18df6d53e650de867e57e5eafea13e771cd34a20476c076bd8b75886
3
+ size 2387