update model card README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: xlm-ate-nobi-en-nes
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# xlm-ate-nobi-en-nes
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.2581
|
22 |
+
- Precision: 0.5875
|
23 |
+
- Recall: 0.4794
|
24 |
+
- F1: 0.5280
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 20
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
55 |
+
| 0.2205 | 1.85 | 500 | 0.5622 | 0.5705 | 0.4546 | 0.5060 |
|
56 |
+
| 0.077 | 3.69 | 1000 | 0.7307 | 0.5715 | 0.4819 | 0.5229 |
|
57 |
+
| 0.0421 | 5.54 | 1500 | 0.8561 | 0.5725 | 0.4965 | 0.5318 |
|
58 |
+
| 0.0253 | 7.38 | 2000 | 0.8979 | 0.5601 | 0.5181 | 0.5383 |
|
59 |
+
| 0.0157 | 9.23 | 2500 | 1.1252 | 0.6047 | 0.4565 | 0.5203 |
|
60 |
+
| 0.0099 | 11.07 | 3000 | 1.1651 | 0.5874 | 0.4781 | 0.5271 |
|
61 |
+
| 0.0077 | 12.92 | 3500 | 1.0574 | 0.5471 | 0.5270 | 0.5369 |
|
62 |
+
| 0.0052 | 14.76 | 4000 | 1.1903 | 0.5879 | 0.4863 | 0.5323 |
|
63 |
+
| 0.0034 | 16.61 | 4500 | 1.2581 | 0.5875 | 0.4794 | 0.5280 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.26.1
|
69 |
+
- Pytorch 2.0.1+cu117
|
70 |
+
- Datasets 2.9.0
|
71 |
+
- Tokenizers 0.13.2
|