tthhanh commited on
Commit
8518b3e
·
1 Parent(s): 84fdaa3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -3
README.md CHANGED
@@ -1,3 +1,71 @@
1
- ---
2
- license: cc-by-nc-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ model-index:
10
+ - name: xlm-ate-nobi-en-nes
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # xlm-ate-nobi-en-nes
18
+
19
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.2581
22
+ - Precision: 0.5875
23
+ - Recall: 0.4794
24
+ - F1: 0.5280
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 32
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 20
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
54
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
55
+ | 0.2205 | 1.85 | 500 | 0.5622 | 0.5705 | 0.4546 | 0.5060 |
56
+ | 0.077 | 3.69 | 1000 | 0.7307 | 0.5715 | 0.4819 | 0.5229 |
57
+ | 0.0421 | 5.54 | 1500 | 0.8561 | 0.5725 | 0.4965 | 0.5318 |
58
+ | 0.0253 | 7.38 | 2000 | 0.8979 | 0.5601 | 0.5181 | 0.5383 |
59
+ | 0.0157 | 9.23 | 2500 | 1.1252 | 0.6047 | 0.4565 | 0.5203 |
60
+ | 0.0099 | 11.07 | 3000 | 1.1651 | 0.5874 | 0.4781 | 0.5271 |
61
+ | 0.0077 | 12.92 | 3500 | 1.0574 | 0.5471 | 0.5270 | 0.5369 |
62
+ | 0.0052 | 14.76 | 4000 | 1.1903 | 0.5879 | 0.4863 | 0.5323 |
63
+ | 0.0034 | 16.61 | 4500 | 1.2581 | 0.5875 | 0.4794 | 0.5280 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.26.1
69
+ - Pytorch 2.0.1+cu117
70
+ - Datasets 2.9.0
71
+ - Tokenizers 0.13.2