--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: xlm-ate-nobi-mul results: [] --- # xlm-ate-nobi-mul This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6371 - Precision: 0.0 - Recall: 0.0 - F1: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--:| | 0.2817 | 0.45 | 500 | 0.4949 | 0.0 | 0.0 | 0 | | 0.1887 | 0.91 | 1000 | 0.5226 | 0.0 | 0.0 | 0 | | 0.1493 | 1.36 | 1500 | 0.5965 | 0.0 | 0.0 | 0 | | 0.1335 | 1.82 | 2000 | 0.6271 | 0.0 | 0.0 | 0 | | 0.1166 | 2.27 | 2500 | 0.7660 | 0.0 | 0.0 | 0 | | 0.1057 | 2.72 | 3000 | 0.6371 | 0.0 | 0.0 | 0 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2