--- library_name: peft license: llama3.1 base_model: barc0/Llama-3.1-ARC-Heavy-Transduction-8B tags: - alignment-handbook - trl - sft - generated_from_trainer datasets: - tttx/test-ttft - barc0/transduction_formatted_rearc_dataset_100k - barc0/transduction_heavy_100k_jsonl model-index: - name: arc-heavy-llama3.1-8b-lora64-testtime-finetuning results: [] --- # arc-heavy-llama3.1-8b-lora64-testtime-finetuning This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Heavy-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Heavy-Transduction-8B) on the tttx/test-ttft, the barc0/transduction_formatted_rearc_dataset_100k and the barc0/transduction_heavy_100k_jsonl datasets. It achieves the following results on the evaluation set: - Loss: 0.0401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0373 | 1.0 | 667 | 0.0589 | | 0.0344 | 2.0 | 1334 | 0.0550 | | 0.009 | 3.0 | 2001 | 0.0401 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3