--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: cb2c1d25-44ec-4a61-8a81-8ed84f722eb7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c2b84ae726e7503f_train_data.json ds_type: json field: topic path: /workspace/input_data/c2b84ae726e7503f_train_data.json type: completion debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 2 flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: tuanna08go/cb2c1d25-44ec-4a61-8a81-8ed84f722eb7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 5 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 2 max_steps: 50 micro_batch_size: 1 mlflow_experiment_name: /tmp/c2b84ae726e7503f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 2 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: null wandb_mode: online wandb_name: cb2c1d25-44ec-4a61-8a81-8ed84f722eb7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cb2c1d25-44ec-4a61-8a81-8ed84f722eb7 warmup_steps: 2 weight_decay: 0.01 xformers_attention: true ```

# cb2c1d25-44ec-4a61-8a81-8ed84f722eb7 This model is a fine-tuned version of [unsloth/Llama-3.2-1B](https://huggingface.co/unsloth/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | 8.7421 | | 1.5326 | 0.0321 | 25 | 1.5825 | | 1.3559 | 0.0642 | 50 | 1.4146 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1