File size: 1,485 Bytes
e4ab7df
 
 
 
 
 
 
b858fbc
e4ab7df
3e3525f
 
 
e4ab7df
 
 
 
 
82996ab
e4ab7df
 
b858fbc
 
e4ab7df
 
82996ab
e4ab7df
 
 
 
 
 
 
 
 
 
 
 
82996ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: other
tags:
- merge
- mergekit
- lazymergekit
- microsoft/Orca-2-13b
- KoboldAI/LLaMA2-13B-Psyfighter2
license_name: microsoft-research-license
base_model:
- KoboldAI/LLaMA2-13B-Psyfighter2
- microsoft/Orca-2-13b
---

# Psyfighter2-Orca2-ties

Psyfighter2-Orca2-ties is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [KoboldAI/LLaMA2-13B-Psyfighter2](https://huggingface.co/KoboldAI/LLaMA2-13B-Psyfighter2)
* [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b)

This is my very first merge I have ever attempted. The motivation behind this merge is to try and create a 13B version of [jebcarter/psyonic-cetacean-20B](https://huggingface.co/jebcarter/psyonic-cetacean-20B). I don't have a good GPU (GTX 1660 6GB), so although I can merge the model, I cannot actually run it. However, the Open LLM Leaderboard ranks this merge with 63.48 avg point, which is higher than both KoboldAI/LLaMA2-13B-Psyfighter2 and jebcarter/psyonic-cetacean-20B, so I must did something right. The next step is to quantize this merge into GGUF so I can actually run it with [KoboldCpp](https://github.com/LostRuins/koboldcpp).

## 🧩 Configuration

```yaml
models:
  - model: KoboldAI/LLaMA2-13B-Psyfighter2
  - model: microsoft/Orca-2-13b
    parameters:
      density: 0.40
      weight: [0, 0.3, 0.7, 1]
merge_method: ties
base_model: KoboldAI/LLaMA2-13B-Psyfighter2
parameters:
  normalize: true
  int8_mask: true
dtype: float16
```