--- language: zh tags: - simcse datasets: - dialogue --- # Data train data is similarity sentence data from E-commerce dialogue ## Model model created by [sentence-tansformers](https://www.sbert.net/index.html),model struct is cross-encoder ### Usage ```python >>> from transformers import AutoTokenizer, AutoModel >>> model = AutoModel.from_pretrained("tuhailong/simcse_model") >>> tokenizer = AutoTokenizer.from_pretrained("tuhailong/simcse_model") >>> sentences_str_list = ["今天天气不错的","天气不错的"] >>> inputs = tokenizer(sentences_str_list,return_tensors="pt", padding='max_length', truncation=True, max_length=32) >>> outputs = model(**inputs) ```