--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: joeddav/xlm-roberta-large-xnli model-index: - name: xlm-roberta-large-xnli-finetuned-mnli results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: mnli metrics: - type: accuracy value: 0.8548888888888889 name: Accuracy --- # xlm-roberta-large-xnli-finetuned-mnli This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2542 - Accuracy: 0.8549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7468 | 1.0 | 2250 | 0.8551 | 0.8348 | | 0.567 | 2.0 | 4500 | 0.8935 | 0.8377 | | 0.318 | 3.0 | 6750 | 0.9892 | 0.8492 | | 0.1146 | 4.0 | 9000 | 1.2373 | 0.8446 | | 0.0383 | 5.0 | 11250 | 1.2542 | 0.8549 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1