--- license: mit --- # Disclamer I do not own, distribute, or take credits for this model, all copyrights belong to [Instadeep](https://huggingface.co/InstaDeepAI) under the [MIT licence](https://github.com/instadeepai/tunbert/) # how to load the model download the weights ``` !git clone https://huggingface.co/not-lain/TunBERT ``` load the model ```python import torch.nn as nn import torch from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification, PreTrainedModel,AutoConfig, BertModel from transformers.modeling_outputs import SequenceClassifierOutput config = AutoConfig.from_pretrained("not-lain/TunBERT") class classifier(nn.Module): def __init__(self,config): super().__init__() self.layer0 = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=True) self.layer1 = nn.Linear(in_features=config.hidden_size, out_features=config.type_vocab_size, bias=True) def forward(self,tensor): out1 = self.layer0(tensor) return self.layer1(out1) class TunBERT(PreTrainedModel): def __init__(self, config): super().__init__(config) self.BertModel = BertModel(config) self.dropout = nn.Dropout(p=0.1, inplace=False) self.classifier = classifier(config) def forward(self,input_ids=None,token_type_ids=None,attention_mask=None,labels=None) : outputs = self.BertModel(input_ids,token_type_ids,attention_mask) sequence_output = self.dropout(outputs.last_hidden_state) logits = self.classifier(sequence_output) loss =None if labels is not None : loss_func = nn.CrossentropyLoss() loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1)) return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions) tunbert = TunBERT(config) tunbert.load_state_dict(torch.load("TunBERT/pytorch_model.bin")) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") ``` # how to use the model ```python text = "[insert text here]" inputs = tokenizer(text,return_tensors='pt') output = model(**inputs) ```