--- license: mit datasets: - garythung/trashnet - Zesky665/TACO - detection-datasets/coco language: - en tags: - object-detection - computer-vision - yolov5 --- # Examples
turhancan97/yolov5-detect-trash-classification
turhancan97/yolov5-detect-trash-classification
turhancan97/yolov5-detect-trash-classification
### How to use - Install [yolov5](https://github.com/fcakyon/yolov5-pip): ```bash pip install -U yolov5 ``` - Load model and perform prediction: ```python import yolov5 # load model model = yolov5.load('turhancan97/yolov5-detect-trash-classification') # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image # set image img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model(img, size=416) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/') ``` - Finetune the model on your custom dataset: ```bash yolov5 train --data data.yaml --img 416 --batch 16 --weights turhancan97/yolov5-detect-trash-classification --epochs 10 ```