upload LFQ implementation
Browse files
configuration_lfq_tokenizer.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hugging Face compatible implementation of Open-MAGVIt2
|
| 3 |
+
Code reference: https://github.com/TencentARC/Open-MAGVIT2
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
from transformers import PretrainedConfig
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class EncoderDecoderConfig(PretrainedConfig):
|
| 11 |
+
model_type = "resnet_encoder_decoder"
|
| 12 |
+
|
| 13 |
+
def __init__(self, **kwargs):
|
| 14 |
+
super().__init__(**kwargs)
|
| 15 |
+
self.ch = kwargs.get("ch", 128)
|
| 16 |
+
self.in_channels = kwargs.get("in_channels", 3)
|
| 17 |
+
self.out_ch = kwargs.get("out_ch", 3)
|
| 18 |
+
self.z_channels = kwargs.get("z_channels", 18)
|
| 19 |
+
self.num_res_blocks = kwargs.get("num_res_blocks", 2)
|
| 20 |
+
self.ch_mult = kwargs.get("ch_mult", [1, 1, 2, 2, 4])
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class QuantizerConfig(PretrainedConfig):
|
| 24 |
+
model_type = "lfq_quantizer"
|
| 25 |
+
|
| 26 |
+
def __init__(self, **kwargs):
|
| 27 |
+
super().__init__(**kwargs)
|
| 28 |
+
self.dim = kwargs.get("dim", 18)
|
| 29 |
+
self.codebook_size = kwargs.get("codebook_size", 262144)
|
| 30 |
+
self.batch_maximization_weight = kwargs.get("batch_maximization_weight", 1.0)
|
| 31 |
+
self.sample_minimization_weight = kwargs.get("sample_minimization_weight", 1.0)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class LFQTokenizerConfig(PretrainedConfig):
|
| 35 |
+
r"""
|
| 36 |
+
This is the configuration class to store the configuration of a :class:`~transform
|
| 37 |
+
"""
|
| 38 |
+
model_type = "lfq_tokenizer"
|
| 39 |
+
|
| 40 |
+
def __init__(self, **kwargs):
|
| 41 |
+
super().__init__(**kwargs)
|
| 42 |
+
self.encoder_decoder_config = kwargs.get("encoder_decoder_config", EncoderDecoderConfig())
|
| 43 |
+
self.quantizer_config = kwargs.get("quantizer_config", QuantizerConfig())
|