{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4375f02180>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1256524, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687165997058946138, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP8yLr+W0gC+VggiP+jUqb3ZfuY/uJOOPiDzgj+oabk+1OIpPySAIr8Yame/wzWpvghB9D7q2Uo/kDKKvkOhfz6hS6A+xc7LPgTHgz/7bBQ+RPEkP52HEb56nWC/Jb3RvPSR1b8NpL4+SOLkPqi3JT95prc+J1JWPzMq7z7l9t4/kRjUv8ZCxb9NgSa/t+0gv6gTWD9x2cE+5r5XvmFfxj5TvCU/dmD+v3uhKj/FPRm+5q7BPfzqhz9SMC4+kp3mPQ10qT8nTJy8jWWQv/ugTLwAbhk/DaS+Pg4qD8D1u8W/pbVlvpxRB0B2GyfAaX4+vwoRND2we6Y9MtbQv5TvkD89VM2/hIUJui8gjL9+jMW85kucP3a1Rry3ubC+af88Pc0Igb9Ii5A+jucAwOKDmz0A4cm/SnmUOelHpT9OfQu9AG4ZPw2kvj4OKg/AqLclP61/1j7ynfE+QV8hP+1aJkCWPow/RN08wL8nKD+Y8sS+wEOZP+6uw7xMWZc/XZq6Px8GP8Aw+Rw+6n3xvtt6X8C4SlC/6gmOPw09HT9BvI8/vTuqP0B34L0RZZC/dAgEvQBuGT8o4ivASOLkPvW7xb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADs8F02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2QqdvQAAAABy+d2/AAAAABozET0AAAAAgdb0PwAAAACFso29AAAAAGBS/z8AAAAAQPXSvQAAAADLXPq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw6Y0NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB4gybwAAAAAG9X+vwAAAAAgWPo8AAAAACdO4j8AAAAAF2zfPAAAAAAMt+Q/AAAAAE72Ar0AAAAAfDLzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZyvjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5+w68AAAAAFKd4L8AAAAAXe3fPAAAAADNS9o/AAAAAKDp9j0AAAAAC33yPwAAAAAVZb+9AAAAACwq+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/As22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApr2ZPQAAAADSS/i/AAAAANoKrL0AAAAAafPbPwAAAAB/jpW9AAAAAJp92j8AAAAApigHPQAAAAAtn+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.37174399999999996, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsqq15Sm66MAWyUTegDjAF0lEdAocXtCPZIx3V9lChoBkdAjQSzyjHn2mgHTegDaAhHQKHJkR/ViF11fZQoaAZHQIwkV6iTMaFoB03oA2gIR0ChzJhtUGVzdX2UKGgGR0CJ21h3JPqLaAdN6ANoCEdAoc3xqwhW53V9lChoBkdAidC/mLcbi2gHTegDaAhHQKHTd3EAHVx1fZQoaAZHQIwfsKE384xoB03oA2gIR0Ch2TRL0z0pdX2UKGgGR0CH2rtWMju8aAdN6ANoCEdAod0JPGhmG3V9lChoBkdAhiMz/Q0GeWgHTegDaAhHQKHeYf4h2W91fZQoaAZHQIYQLINmUW5oB03oA2gIR0Ch4wArhBJJdX2UKGgGR0CIqBkxREWqaAdN6ANoCEdAoeapPuXu3XV9lChoBkdAjgy3azu4PWgHTegDaAhHQKHppOLR8dB1fZQoaAZHQIxmDor4FidoB03oA2gIR0Ch6vZ3Tuv2dX2UKGgGR0CJ2Nlz2exwaAdN6ANoCEdAoe+6SgXdkHV9lChoBkdAipzE5p8F6mgHTegDaAhHQKH1QbyYoiN1fZQoaAZHQIux1pVS4vxoB03oA2gIR0Ch+hYnWrfcdX2UKGgGR0CLvA5NoJzDaAdN6ANoCEdAofunXd0q6XV9lChoBkdAjKyPa+N96WgHTegDaAhHQKIANN3W4Ex1fZQoaAZHQIi2if4AS39oB03oA2gIR0CiA+5Z8rqddX2UKGgGR0CJpYCUX531aAdN6ANoCEdAogbzPQfIS3V9lChoBkdAjQQXZf2K22gHTegDaAhHQKIITzasZHd1fZQoaAZHQItDO3MINVloB03oA2gIR0CiDOM6RyOrdX2UKGgGR0CJQa7mMfihaAdN6ANoCEdAohFmO6unuXV9lChoBkdAi4kRDb8FZGgHTegDaAhHQKIWAmtyPuJ1fZQoaAZHQIkY55HEuQJoB03oA2gIR0CiGBmhdt2tdX2UKGgGR0CPzt9H+ZPVaAdN6ANoCEdAoh06v/zasnV9lChoBkdAkAcVN1yNoGgHTegDaAhHQKIg5MWXTmZ1fZQoaAZHQIq1Z4Oc2BJoB03oA2gIR0CiI+h4MWoFdX2UKGgGR0COs+QLeANHaAdN6ANoCEdAoiU6ItUXHnV9lChoBkdAjD+yGrS3LGgHTegDaAhHQKIp1uvUz9F1fZQoaAZHQIucOOIZZSxoB03oA2gIR0CiLYo5HVgAdX2UKGgGR0CQoFqhlDneaAdN6ANoCEdAojHBb6guiHV9lChoBkdAit3UQ9RrJ2gHTegDaAhHQKIz3bbDdgx1fZQoaAZHQIYynZRKpUBoB03oA2gIR0CiOkBNmDlHdX2UKGgGR0CH2ZPszEaVaAdN6ANoCEdAoj3gqbz9THV9lChoBkdAikOIPTXrdGgHTegDaAhHQKJA4lZX+2p1fZQoaAZHQJK+Gza9K29oB03oA2gIR0CiQjMguAZsdX2UKGgGR0CUIztihFmWaAdN6ANoCEdAoka5W1c+q3V9lChoBkdAiPWQ482aUmgHTegDaAhHQKJKZLRrrPd1fZQoaAZHQJGvQ+QlruZoB03oA2gIR0CiTbearmyPdX2UKGgGR0CQc1os7MgVaAdN6ANoCEdAok+g5YHPeHV9lChoBkdAjppWTX8O1GgHTegDaAhHQKJWiuCf6Gh1fZQoaAZHQI5F2A7PppxoB03oA2gIR0CiWrC3w1BMdX2UKGgGR0COFX4REnb7aAdN6ANoCEdAol2vIGQjlnV9lChoBkdAi40tfgJkXmgHTegDaAhHQKJe/9BKL891fZQoaAZHQJMUVxBE8aJoB03oA2gIR0CiY4GGdqcmdX2UKGgGR0CT1o+6RQrMaAdN6ANoCEdAomczqW1MNHV9lChoBkdAkcG6LsKLKmgHTegDaAhHQKJqO8Tzund1fZQoaAZHQJLJ+GFi8WdoB03oA2gIR0Cia5MkhRqHdX2UKGgGR0CJ6Nslb/wRaAdN6ANoCEdAonJShlDneXV9lChoBkdAkeFjAeq7y2gHTegDaAhHQKJ3vFLFn7J1fZQoaAZHQJExFK6FueloB03oA2gIR0CieszcZccEdX2UKGgGR0CQpmjNIK+jaAdN6ANoCEdAonwhvkzXSXV9lChoBkdAjwVxD9fkWGgHTegDaAhHQKKArWd3B551fZQoaAZHQId0plJ6IFhoB03oA2gIR0CihFs67ulXdX2UKGgGR0CMjl/FR51OaAdN6ANoCEdAood2QGOdXnV9lChoBkdAkINJWNm16WgHTegDaAhHQKKI1f3vhIh1fZQoaAZHQIjsSqU/wAloB03oA2gIR0CijoZzo2XLdX2UKGgGR0CNwIbn5i3HaAdN6ANoCEdAopQzt5UtI3V9lChoBkdAiUMgy/KyOmgHTegDaAhHQKKYBgG8mKJ1fZQoaAZHQJFCy0Sh8IBoB03oA2gIR0CimV5fdAPedX2UKGgGR0CNb9Uoa1kUaAdN6ANoCEdAop3tqYZ2p3V9lChoBkdAkLSifQKKHmgHTegDaAhHQKKhl7iyY5V1fZQoaAZHQJFIbPVurIZoB03oA2gIR0CipKzMA3kxdX2UKGgGR0CRvAnwob4raAdN6ANoCEdAoqYJckdFOXV9lChoBkdAji1GmUGFBmgHTegDaAhHQKKqsvdM0xd1fZQoaAZHQIud6fra/RFoB03oA2gIR0CisDLV4HHFdX2UKGgGR0CMU7/ZuhsZaAdN6ANoCEdAorTy2F36h3V9lChoBkdAjJxouoP07WgHTegDaAhHQKK2k31BdD91fZQoaAZHQJJOmdbxEv1oB03oA2gIR0CiuyckleF+dX2UKGgGR0CISMc0+C9RaAdN6ANoCEdAor7eK2rn1XV9lChoBkdAiZG/47A+IWgHTegDaAhHQKLB3oUzsQd1fZQoaAZHQI8+27OE/SpoB03oA2gIR0CiwzV5jYqYdX2UKGgGR0CO1VynUDuCaAdN6ANoCEdAosfzXarWAnV9lChoBkdAjQioa99MK2gHTegDaAhHQKLMjVy3kPt1fZQoaAZHQJJXit9x6v9oB03oA2gIR0Ci0ScOskprdX2UKGgGR0CIwz2zOX3QaAdN6ANoCEdAotM/rWy1NXV9lChoBkdAjB8pF9a2W2gHTegDaAhHQKLYWhje9Bd1fZQoaAZHQJHH+DFqBVdoB03oA2gIR0Ci3AaciGFjdX2UKGgGR0CS3EHYHxBmaAdN6ANoCEdAot8RJqZc9nV9lChoBkdAfjtE/0NBnmgHTegDaAhHQKLgaM98qnZ1fZQoaAZHQJQxwWhysCFoB03oA2gIR0Ci5PMqJ/G3dX2UKGgGR0CTbfyYG+sYaAdN6ANoCEdAouirmEGqxXV9lChoBkdAiZxWattALWgHTegDaAhHQKLtHIlMRHx1fZQoaAZHQIlGNFMIu5BoB03oA2gIR0Ci70XIMjNZdX2UKGgGR0CQJpmKZUkwaAdN6ANoCEdAovWl8NQTEnV9lChoBkdAin8pazNUwWgHTegDaAhHQKL5Vg1m8NB1fZQoaAZHQIeK4m5UcXFoB03oA2gIR0Ci/GNEPUaydX2UKGgGR0CIY/T3qRlpaAdN6ANoCEdAov25yhi9ZnV9lChoBkdAjiAC2+fyw2gHTegDaAhHQKMCTPIn0Cl1fZQoaAZHQImg3pbD/ERoB03oA2gIR0CjBgNahYeUdX2UKGgGR0CTZNHJcPe6aAdN6ANoCEdAowl/Z00WM3V9lChoBkdAh/Yte+mFamgHTegDaAhHQKMLbfeDWbx1fZQoaAZHQJQoS7pV0cRoB03oA2gIR0CjEqh8x9G7dX2UKGgGR0CHu6+hXbM5aAdN6ANoCEdAoxaMQ2/BWXV9lChoBkdAi4tCRGMGYGgHTegDaAhHQKMZlNlAeJZ1fZQoaAZHQI16bNSqEOBoB03oA2gIR0CjGvreQ+2WdX2UKGgGR0CQJR3EAHVxaAdN6ANoCEdAox+J3A2ycHV9lChoBkdAi66BStNi6WgHTegDaAhHQKMjOrbxmTV1fZQoaAZHQIqx07hegL9oB03oA2gIR0CjJlg1NxlydX2UKGgGR0CMwLZrYXfqaAdN6ANoCEdAoyfxK8L8aXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 39266, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}