from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin import einops import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .layers import LLamaFeedForward, RMSNorm def modulate(x, scale): return x * (1 + scale) class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.hidden_size = hidden_size self.frequency_embedding_size = frequency_embedding_size self.mlp = nn.Sequential( nn.Linear(self.frequency_embedding_size, self.hidden_size), nn.SiLU(), nn.Linear(self.hidden_size, self.hidden_size), ) @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half ).to(t.device) args = t[:, :, None] * freqs[None, :] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_freq = t_freq.to(self.mlp[0].weight.dtype) return self.mlp(t_freq) class FinalLayer(nn.Module): def __init__(self, hidden_size, num_patches, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False) self.linear = nn.Linear(hidden_size, num_patches * out_channels) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(min(hidden_size, 1024), hidden_size), ) def forward(self, x, c): scale = self.adaLN_modulation(c) x = modulate(self.norm_final(x), scale) x = self.linear(x) return x class Attention(nn.Module): def __init__( self, dim, n_heads, n_kv_heads=None, qk_norm=False, y_dim=0, base_seqlen=None, proportional_attn=False, attention_dropout=0.0, max_position_embeddings=384, ): super().__init__() self.dim = dim self.n_heads = n_heads self.n_kv_heads = n_kv_heads or n_heads self.qk_norm = qk_norm self.y_dim = y_dim self.base_seqlen = base_seqlen self.proportional_attn = proportional_attn self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.head_dim = dim // n_heads self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False) self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False) self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False) if y_dim > 0: self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False) self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False) self.gate = nn.Parameter(torch.zeros(n_heads)) self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False) if qk_norm: self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim) self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim) if y_dim > 0: self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6) else: self.ky_norm = nn.Identity() else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() self.ky_norm = nn.Identity() @staticmethod def apply_rotary_emb(xq, xk, freqs_cis): # xq, xk: [batch_size, seq_len, n_heads, head_dim] # freqs_cis: [1, seq_len, 1, head_dim] xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2) xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2) xq_complex = torch.view_as_complex(xq_) xk_complex = torch.view_as_complex(xk_) freqs_cis = freqs_cis.unsqueeze(2) # Apply freqs_cis xq_out = xq_complex * freqs_cis xk_out = xk_complex * freqs_cis # Convert back to real numbers xq_out = torch.view_as_real(xq_out).flatten(-2) xk_out = torch.view_as_real(xk_out).flatten(-2) return xq_out.type_as(xq), xk_out.type_as(xk) def forward( self, x, x_mask, freqs_cis, y=None, y_mask=None, init_cache=False, ): bsz, seqlen, _ = x.size() xq = self.wq(x) xk = self.wk(x) xv = self.wv(x) if x_mask is None: x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device) inp_dtype = xq.dtype xq = self.q_norm(xq) xk = self.k_norm(xk) xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim) if self.n_kv_heads != self.n_heads: n_rep = self.n_heads // self.n_kv_heads xk = xk.repeat_interleave(n_rep, dim=2) xv = xv.repeat_interleave(n_rep, dim=2) freqs_cis = freqs_cis.to(xq.device) xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis) output = ( F.scaled_dot_product_attention( xq.permute(0, 2, 1, 3), xk.permute(0, 2, 1, 3), xv.permute(0, 2, 1, 3), attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1), scale=None, ) .permute(0, 2, 1, 3) .to(inp_dtype) ) if hasattr(self, "wk_y"): yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim) yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim) n_rep = self.n_heads // self.n_kv_heads # if n_rep >= 1: # yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) # yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) if n_rep >= 1: yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep) yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep) output_y = F.scaled_dot_product_attention( xq.permute(0, 2, 1, 3), yk.permute(0, 2, 1, 3), yv.permute(0, 2, 1, 3), y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool), ).permute(0, 2, 1, 3) output_y = output_y * self.gate.tanh().view(1, 1, -1, 1) output = output + output_y output = output.flatten(-2) output = self.wo(output) return output.to(inp_dtype) class TransformerBlock(nn.Module): """ Corresponds to the Transformer block in the JAX code. """ def __init__( self, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, y_dim, max_position_embeddings, ): super().__init__() self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings) self.feed_forward = LLamaFeedForward( dim=dim, hidden_dim=4 * dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, ) self.attention_norm1 = RMSNorm(dim, eps=norm_eps) self.attention_norm2 = RMSNorm(dim, eps=norm_eps) self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(min(dim, 1024), 4 * dim), ) self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps) def forward( self, x, x_mask, freqs_cis, y, y_mask, adaln_input=None, ): if adaln_input is not None: scales_gates = self.adaLN_modulation(adaln_input) # TODO: Duong - check the dimension of chunking # scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1) scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1) x = x + torch.tanh(gate_msa) * self.attention_norm2( self.attention( modulate(self.attention_norm1(x), scale_msa), # ok x_mask, freqs_cis, self.attention_y_norm(y), # ok y_mask, ) ) x = x + torch.tanh(gate_mlp) * self.ffn_norm2( self.feed_forward( modulate(self.ffn_norm1(x), scale_mlp), ) ) else: x = x + self.attention_norm2( self.attention( self.attention_norm1(x), x_mask, freqs_cis, self.attention_y_norm(y), y_mask, ) ) x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x))) return x class NextDiT(ModelMixin, ConfigMixin): """ Diffusion model with a Transformer backbone for joint image-video training. """ @register_to_config def __init__( self, input_size=(1, 32, 32), patch_size=(1, 2, 2), in_channels=16, hidden_size=4096, depth=32, num_heads=32, num_kv_heads=None, multiple_of=256, ffn_dim_multiplier=None, norm_eps=1e-5, pred_sigma=False, caption_channels=4096, qk_norm=False, norm_type="rms", model_max_length=120, rotary_max_length=384, rotary_max_length_t=None ): super().__init__() self.input_size = input_size self.patch_size = patch_size self.in_channels = in_channels self.hidden_size = hidden_size self.depth = depth self.num_heads = num_heads self.num_kv_heads = num_kv_heads or num_heads self.multiple_of = multiple_of self.ffn_dim_multiplier = ffn_dim_multiplier self.norm_eps = norm_eps self.pred_sigma = pred_sigma self.caption_channels = caption_channels self.qk_norm = qk_norm self.norm_type = norm_type self.model_max_length = model_max_length self.rotary_max_length = rotary_max_length self.rotary_max_length_t = rotary_max_length_t self.out_channels = in_channels * 2 if pred_sigma else in_channels self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size) self.t_embedder = TimestepEmbedder(min(hidden_size, 1024)) self.y_embedder = nn.Sequential( nn.LayerNorm(caption_channels, eps=1e-6), nn.Linear(caption_channels, min(hidden_size, 1024)), ) self.layers = nn.ModuleList([ TransformerBlock( dim=hidden_size, n_heads=num_heads, n_kv_heads=self.num_kv_heads, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, norm_eps=norm_eps, qk_norm=qk_norm, y_dim=caption_channels, max_position_embeddings=rotary_max_length, ) for _ in range(depth) ]) self.final_layer = FinalLayer( hidden_size=hidden_size, num_patches=np.prod(patch_size), out_channels=self.out_channels, ) assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6" self.freqs_cis = self.precompute_freqs_cis( hidden_size // num_heads, self.rotary_max_length, end_t=self.rotary_max_length_t ) def to(self, *args, **kwargs): self = super().to(*args, **kwargs) # self.freqs_cis = self.freqs_cis.to(*args, **kwargs) return self @staticmethod def precompute_freqs_cis( dim: int, end: int, end_t: int = None, theta: float = 10000.0, scale_factor: float = 1.0, scale_watershed: float = 1.0, timestep: float = 1.0, ): if timestep < scale_watershed: linear_factor = scale_factor ntk_factor = 1.0 else: linear_factor = 1.0 ntk_factor = scale_factor theta = theta * ntk_factor freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor timestep = torch.arange(end, dtype=torch.float32) freqs = torch.outer(timestep, freqs).float() freqs_cis = torch.exp(1j * freqs) if end_t is not None: freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor timestep_t = torch.arange(end_t, dtype=torch.float32) freqs_t = torch.outer(timestep_t, freqs_t).float() freqs_cis_t = torch.exp(1j * freqs_t) freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1) else: end_t = end freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1) freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1) freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1) freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1) return freqs_cis def forward( self, samples, timesteps, encoder_hidden_states, encoder_attention_mask, scale_factor: float = 1.0, # scale_factor for rotary embedding scale_watershed: float = 1.0, # scale_watershed for rotary embedding ): if samples.ndim == 4: # B C H W samples = samples[:, None, ...] # B F C H W precomputed_freqs_cis = None if scale_factor != 1 or scale_watershed != 1: precomputed_freqs_cis = self.precompute_freqs_cis( self.hidden_size // self.num_heads, self.rotary_max_length, end_t=self.rotary_max_length_t, scale_factor=scale_factor, scale_watershed=scale_watershed, timestep=torch.max(timesteps.cpu()).item() ) if len(timesteps.shape) == 5: t, *_ = self.patchify(timesteps, precomputed_freqs_cis) timesteps = t.mean(dim=-1) elif len(timesteps.shape) == 1: timesteps = timesteps[:, None, None, None, None].expand_as(samples) t, *_ = self.patchify(timesteps, precomputed_freqs_cis) timesteps = t.mean(dim=-1) samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis) samples = self.x_embedder(samples) t = self.t_embedder(timesteps) encoder_attention_mask_float = encoder_attention_mask[..., None].float() encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8) encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype) y = self.y_embedder(encoder_hidden_states_pool) y = y.unsqueeze(1).expand(-1, samples.size(1), -1) adaln_input = t + y for block in self.layers: samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input) samples = self.final_layer(samples, adaln_input) samples = self.unpatchify(samples, T, H, W) return samples def patchify(self, x, precompute_freqs_cis=None): # pytorch is C, H, W B, T, C, H, W = x.size() pT, pH, pW = self.patch_size x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW) x = x.permute(0, 1, 4, 6, 2, 5, 7, 3) x = x.reshape(B, -1, pT * pH * pW * C) if precompute_freqs_cis is None: freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device) else: freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device) return x, T // pT, H // pH, W // pW, freqs_cis def unpatchify(self, x, T, H, W): B = x.size(0) C = self.out_channels pT, pH, pW = self.patch_size x = x.view(B, T, H, W, pT, pH, pW, C) x = x.permute(0, 1, 4, 7, 2, 5, 3, 6) x = x.reshape(B, T * pT, C, H * pH, W * pW) return x