{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install transformers\n", "%pip install torch\n", "%pip install pandas\n", "%pip install scikit-learn\n", "%pip install datasets\n", "%pip install evaluate\n", "%pip install tqdm\n", "%pip install openpyxl\n", "%pip install numpy" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForMaskedLM\n", "import torch" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of XLMRobertaForMaskedLM were not initialized from the model checkpoint at fine-tuned-512-8 and are newly initialized: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] } ], "source": [ "model = AutoModelForSequenceClassification.from_pretrained(\"fine-tuned-512-8\")\n", "masked_model = AutoModelForMaskedLM.from_pretrained(\"fine-tuned-512-8\") \n", "tokenizer = AutoTokenizer.from_pretrained('tokenizer', padding=True)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def predict(text):\n", " inputs = tokenizer(text, return_tensors=\"pt\", truncation=True, padding=True)\n", " labels_mapping = {0: 'negative', 1: 'positive'}\n", " outputs = model(**inputs)\n", " logits = outputs.logits\n", " predicted_class = torch.argmax(logits, dim=1).item()\n", " print(f\"Predicted Class: {labels_mapping[predicted_class]}\")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predicted Class: negative\n" ] } ], "source": [ "predict('នេះគីជាល្បះមិនវិជ្ជមានសម្រាប់ប្រជាជនខ្មែរ')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "cadtml", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }