--- license: mit language: - km base_model: - FacebookAI/xlm-roberta-base pipeline_tag: text-classification library_name: transformers tags: - sentiment --- **This is a fine-tuned version of the XLM-RoBERTa model for sentiment analysis to classify khmer texts into 2 categories; Postive and Negative.** **It can process texts up to 512 tokens and performs well on khmer text inputs.** - **Task**: Sentiment analysis (binary classification). - **Languages Supported**: Khmer. - **Intended Use Cases**: - Analyzing customer reviews. - Social media sentiment detection. - **Limitations**: - Performance may degrade on languages or domains not present in the training data. - Does not handle sarcasm or highly ambiguous inputs well. - The model was evaluated on a test set of [Number] samples, achieving the following performance: - **Test Accuracy**: 83.25% - **Precision**: 83.55% - **Recall**: 83.25% - **F1 Score**: 83.25% Confusion Matrix: | Predicted\Actual | Negative | Positive | |-------------------|----------|----------| | **Negative** | 166 | 42 | | **Positive** | 25 | 167 | The model supports a maximum sequence length of 512 tokens. ## How to Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Tykea/khmer-text-sentiment-analysis-roberta") model = AutoModelForSequenceClassification.from_pretrained("Tykea/khmer-text-sentiment-analysis-roberta") text = "អគុណCADT" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) outputs = model(**inputs) predictions = outputs.logits.argmax(dim=1) labels_mapping = {0: 'negative', 1: 'positive'} print("Predicted Class:", labels_mapping[predictions.item()])