--- license: mit language: - km metrics: - accuracy base_model: - facebook/mbart-large-50 library_name: transformers datasets: - kimleang123/khmer_question_answer --- ## How to use the model Import model and tokenizer from transformer libray ```py # Load model directly from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("tykea/mBart-large-50-KQA") model = AutoModelForSeq2SeqLM.from_pretrained("tykea/mBart-large-50-KQA") ``` Define function to take question and pass to the model ```py import torch #ask function for easier asking def ask(custom_question): # Tokenize the input inputs = tokenizer( f"qestion: {custom_question}", return_tensors="pt", truncation=True, max_length=512, padding="max_length" ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") inputs = {key: value.to(device) for key, value in inputs.items()} model.eval() with torch.no_grad(): outputs = model.generate( input_ids=inputs["input_ids"], max_length=50, num_beams=4, repetition_penalty=2.0, early_stopping=True, do_sample=True, top_k=50, top_p=0.95, temperature=0.7, ) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Question: {custom_question}") print(f"Answer: {answer}") ``` Then call the function #ask function ```py question = "តើរស់នៅប្រទេសណា" ask(question) #output #Question: តើរស់នៅប្រទេសណា #Answer: រស់នៅប្រទេសអង់គ្លេស ```