Update
Browse files- README.md +94 -0
- config.json +54 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: Chinese
|
3 |
+
datasets: CLUECorpusSmall
|
4 |
+
widget:
|
5 |
+
- text: "内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。"
|
6 |
+
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
# Chinese Pegasus
|
11 |
+
|
12 |
+
## Model description
|
13 |
+
|
14 |
+
This model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658).
|
15 |
+
|
16 |
+
You can download the set of Chinese PEGASUS models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below:
|
17 |
+
|
18 |
+
| | Link |
|
19 |
+
| ----------------- | :----------------------------: |
|
20 |
+
| **PEGASUS-Base** | [**L=12/H=768 (Base)**][base] |
|
21 |
+
| **PEGASUS-Large** | [**L=16/H=1024 (Large)**][large] |
|
22 |
+
|
23 |
+
## How to use
|
24 |
+
|
25 |
+
You can use this model directly with a pipeline for text2text generation (take the case of PEGASUS-Base):
|
26 |
+
|
27 |
+
```python
|
28 |
+
>>> from transformers import BertTokenizer, PegasusForConditionalGeneration, Text2TextGenerationPipeline
|
29 |
+
>>> tokenizer = BertTokenizer.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall")
|
30 |
+
>>> model = PegasusForConditionalGeneration.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall")
|
31 |
+
>>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer)
|
32 |
+
>>> text2text_generator("内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。", max_length=50, do_sample=False)
|
33 |
+
[{'generated_text': '书 的 质 量 很 好 。'}]
|
34 |
+
```
|
35 |
+
|
36 |
+
## Training data
|
37 |
+
|
38 |
+
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 512.
|
43 |
+
Taking the case of PEGASUS-Base
|
44 |
+
|
45 |
+
```
|
46 |
+
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
|
47 |
+
--vocab_path models/google_zh_vocab.txt \
|
48 |
+
--dataset_path cluecorpussmall_pegasus_seq512_dataset.pt \
|
49 |
+
--processes_num 32 --seq_length 512 \
|
50 |
+
--data_processor gsg --sentence_selection_strategy random
|
51 |
+
```
|
52 |
+
|
53 |
+
```
|
54 |
+
python3 pretrain.py --dataset_path cluecorpussmall_pegasus_seq512_dataset.pt \
|
55 |
+
--vocab_path models/google_zh_vocab.txt \
|
56 |
+
--config_path models/pegasus/base_config.json \
|
57 |
+
--output_model_path models/cluecorpussmall_pegasus_base_seq512_model.bin \
|
58 |
+
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
59 |
+
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
|
60 |
+
--learning_rate 1e-4 --batch_size 8
|
61 |
+
```
|
62 |
+
|
63 |
+
Finally, we convert the pre-trained model into Huggingface's format:
|
64 |
+
|
65 |
+
```
|
66 |
+
python3 scripts/convert_pegasus_from_uer_to_huggingface.py --input_model_path cluecorpussmall_pegasus_base_seq512_model.bin-250000 \
|
67 |
+
--output_model_path pytorch_model.bin \
|
68 |
+
--layers_num 12
|
69 |
+
```
|
70 |
+
|
71 |
+
|
72 |
+
### BibTeX entry and citation info
|
73 |
+
|
74 |
+
```
|
75 |
+
@inproceedings{zhang2020pegasus,
|
76 |
+
title={Pegasus: Pre-training with extracted gap-sentences for abstractive summarization},
|
77 |
+
author={Zhang, Jingqing and Zhao, Yao and Saleh, Mohammad and Liu, Peter},
|
78 |
+
booktitle={International Conference on Machine Learning},
|
79 |
+
pages={11328--11339},
|
80 |
+
year={2020},
|
81 |
+
organization={PMLR}
|
82 |
+
}
|
83 |
+
|
84 |
+
@article{zhao2019uer,
|
85 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
86 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
87 |
+
journal={EMNLP-IJCNLP 2019},
|
88 |
+
pages={241},
|
89 |
+
year={2019}
|
90 |
+
}
|
91 |
+
```
|
92 |
+
|
93 |
+
[base]:https://huggingface.co/uer/pegasus-base-chinese-cluecorpussmall
|
94 |
+
[large]:https://huggingface.co/uer/pegasus-large-chinese-cluecorpussmall
|
config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "pegasus",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"activation_function": "relu",
|
5 |
+
"add_bias_logits": false,
|
6 |
+
"add_final_layer_norm": true,
|
7 |
+
"architectures": [
|
8 |
+
"PegasusForConditionalGeneration"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"bos_token_id": 101,
|
12 |
+
"classif_dropout": 0.0,
|
13 |
+
"classifier_dropout": 0.0,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 16,
|
19 |
+
"decoder_start_token_id": 101,
|
20 |
+
"dropout": 0.1,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 16,
|
25 |
+
"eos_token_id": 1,
|
26 |
+
"extra_pos_embeddings": 1,
|
27 |
+
"force_bos_token_to_be_generated": false,
|
28 |
+
"forced_eos_token_id": 102,
|
29 |
+
"gradient_checkpointing": false,
|
30 |
+
"id2label": {
|
31 |
+
"0": "LABEL_0",
|
32 |
+
"1": "LABEL_1",
|
33 |
+
"2": "LABEL_2"
|
34 |
+
},
|
35 |
+
"init_std": 0.02,
|
36 |
+
"is_encoder_decoder": true,
|
37 |
+
"label2id": {
|
38 |
+
"LABEL_0": 0,
|
39 |
+
"LABEL_1": 1,
|
40 |
+
"LABEL_2": 2
|
41 |
+
},
|
42 |
+
"max_length": 256,
|
43 |
+
"max_position_embeddings": 1024,
|
44 |
+
"model_type": "pegasus",
|
45 |
+
"normalize_before": true,
|
46 |
+
"normalize_embedding": false,
|
47 |
+
"num_hidden_layers": 16,
|
48 |
+
"pad_token_id": 0,
|
49 |
+
"scale_embedding": true,
|
50 |
+
"static_position_embeddings": true,
|
51 |
+
"transformers_version": "4.13.0.dev0",
|
52 |
+
"use_cache": true,
|
53 |
+
"vocab_size": 21128
|
54 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bca70d7816a42a3751d9ab17cc7f86ae606ba020c313775092a2a1c08d7dcf06
|
3 |
+
size 1976418801
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9d4f6cda0f75f2ef3562ad7a88a1d2ca911a35c000f56ca336f6a09bf3563f5
|
3 |
+
size 1976809520
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "pegasus", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|