--- license: mit language: - en pipeline_tag: question-answering --- # Llama-2-Qlora This model is fine-tuned with LLaMA-2 with 8 Nvidia A100-80G GPUs using 3,000,000 groups of conversations in the context of mathematics by students and facilitators on Algebra Nation (https://www.mathnation.com/). Llama-mt-lora consists of 32 layers and over 7 billion parameters, consuming up to 13.5 gigabytes of disk space. Researchers can experiment with and finetune the model to help construct math conversational AI that can effectively respond generation in a mathematical context. ### Here is how to use it with texts in HuggingFace ```python import torch import transformers from transformers import LlamaTokenizer, LlamaForCausalLM tokenizer = LlamaTokenizer.from_pretrained("uf-aice-lab/Llama-2-QLoRA") mdoel = LlamaForCausalLM.from_pretrained( "uf-aice-lab/Llama-2-QLoRA", load_in_8bit=False, torch_dtype=torch.float16, device_map="auto", ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip() instruction = 'write your instruction here' inputs = 'write your inputs here' output= evaluate(instruction, input=inputs, temperature=0.1,#change the parameters by yourself top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128,) ```