Update README.md
Browse files
README.md
CHANGED
@@ -3,11 +3,14 @@ license: llama2
|
|
3 |
language:
|
4 |
- en
|
5 |
---
|
6 |
-
# DAMA
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
-
## Model
|
|
|
|
|
|
|
11 |
|
12 |
### Model Description
|
13 |
|
@@ -16,35 +19,105 @@ language:
|
|
16 |
|
17 |
|
18 |
- **Developed by:** Tomasz Limisiewicz, David Mareček, Tomáš Musil
|
|
|
19 |
- **Language(s) (NLP):** English
|
20 |
-
- **Adapted from model:** LLaMA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
### Model Sources
|
23 |
|
24 |
<!-- Provide the basic links for the model. -->
|
25 |
|
26 |
-
- **Repository
|
27 |
-
- **Paper
|
28 |
|
29 |
-
## Uses
|
30 |
|
31 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
32 |
|
33 |
-
|
34 |
|
35 |
-
<!-- This section is
|
36 |
|
37 |
-
The model
|
|
|
|
|
38 |
|
39 |
|
40 |
-
## Bias, Risks, and Limitations
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
## Citation
|
50 |
|
@@ -63,3 +136,6 @@ url={https://openreview.net/forum?id=XIZEFyVGC9}
|
|
63 |
}
|
64 |
```
|
65 |
|
|
|
|
|
|
|
|
3 |
language:
|
4 |
- en
|
5 |
---
|
6 |
+
# DAMA
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
+
## Model
|
11 |
+
|
12 |
+
LLaMA model adapted to mitigate gender bias in text generation.
|
13 |
+
For adaptation, we used **D**ebiasing **A**lgorithm through **M**odel **A**daptation (DAMA) method described in [Limisiewicz et al., 2024](https://openreview.net/pdf?id=XIZEFyVGC9).
|
14 |
|
15 |
### Model Description
|
16 |
|
|
|
19 |
|
20 |
|
21 |
- **Developed by:** Tomasz Limisiewicz, David Mareček, Tomáš Musil
|
22 |
+
- **Funded by:** Grant Agency Czech Republic
|
23 |
- **Language(s) (NLP):** English
|
24 |
+
- **Adapted from model:** LLaMA
|
25 |
+
|
26 |
+
### Model Sizes
|
27 |
+
|
28 |
+
- **[7B](https://huggingface.co/ufal/DAMA-7B)**
|
29 |
+
- **[13B](https://huggingface.co/ufal/DAMA-13B)**
|
30 |
+
- **[33B](https://huggingface.co/ufal/DAMA-33B)**
|
31 |
+
- **[65B](https://huggingface.co/ufal/DAMA-65B)**
|
32 |
|
33 |
### Model Sources
|
34 |
|
35 |
<!-- Provide the basic links for the model. -->
|
36 |
|
37 |
+
- **[Repository](github.com/tomlimi/DAMA)**
|
38 |
+
- **[Paper](openreview.net/pdf?id=XIZEFyVGC9)**
|
39 |
|
|
|
40 |
|
|
|
41 |
|
42 |
+
## Bias, Risks, and Limitations
|
43 |
|
44 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
45 |
|
46 |
+
The model mitigates the gender bias of the original model.
|
47 |
+
It is better suited for generating and processing texts in sensitive domains.
|
48 |
+
However, we recommend caution for such use cases because the models retain bias.
|
49 |
|
50 |
|
|
|
51 |
|
52 |
+
## Adaptation
|
53 |
|
54 |
+
<!-- Include image. -->
|
55 |
+
|
56 |
+
![Dama Schema](DamaSchema.png)
|
57 |
+
|
58 |
+
Schema (b) shows DAMA intervention in a LLaMA layer.
|
59 |
+
Even though `I - P_c` is depicted as a separate module, in practice, it is multiplied with the output matrix of a feed-forward layer (`W_FF`).
|
60 |
+
Therefore, DAMA is neutral to the model's parameter count and architecture.
|
61 |
+
(a) We show the behavior of the model when presented with a stereotypical prompt.
|
62 |
+
Specifically, (c) shows the projections of the feed-forward latent vector (`u`) onto the output space.
|
63 |
+
With DAMA (lower arrow), we nullify the gender component of the representation.
|
64 |
+
It results in balanced probabilities of gendered tokens in the model's output, as shown in (d).
|
65 |
+
|
66 |
+
The method for obtaining `P_c` is based on the Partial Least Square algorithm.
|
67 |
+
For more details, please refer to the [paper](https://openreview.net/pdf?id=XIZEFyVGC9).
|
68 |
+
|
69 |
+
## Evaluation
|
70 |
+
|
71 |
+
We evaluate the models on multiple benchmarks to assess gender bias and language understanding capabilities.
|
72 |
+
DAMA models are compared with the original LLaMA models.
|
73 |
|
74 |
|
75 |
+
### Bias Evaluation
|
76 |
+
|
77 |
+
We introduced a metric for evaluating gender bias in text generation.
|
78 |
+
It measures to which extent the models' output is affected by stereotypical `a_s` and factual `a_f` gender signals.
|
79 |
+
|
80 |
+
Moreover, we provide the scores for two established bias benchmarks: **WinoBias** and **Stereoset**.
|
81 |
+
|
82 |
+
### Results
|
83 |
+
|
84 |
+
|
85 |
+
| | Bias | in | LM | | WinoBias | | | StereoSet | |
|
86 |
+
|--------------------------------------------------------------------|--------|-------|--------|--------|-----------|-----------|------|-----------|------|
|
87 |
+
| | `a_s` | `a_f` | `b` | Acc | `Delta S` | `Delta G` | lms | ss | ICAT |
|
88 |
+
| LLaMA 7B | 0.235 | 0.320 | 0.072 | 59.1\% | 40.3\% | 3.0\% | 95.5 | 71.9 | 53.7 |
|
89 |
+
| DAMA 7B | -0.005 | 0.038 | -0.006 | 57.3\% | 31.5\% | 2.3\% | 95.5 | 69.3 | 58.5 |
|
90 |
+
| LLaMA 13B | 0.270 | 0.351 | 0.070 | 70.5\% | 35.7\% | -1.5\% | 95.2 | 71.4 | 54.4 |
|
91 |
+
| DAMA 13B | 0.148 | 0.222 | 0.059 | 66.4\% | 31.1\% | -1.1\% | 94.4 | 68.6 | 59.4 |
|
92 |
+
| LLaMA 33B | 0.265 | 0.343 | 0.092 | 71.0\% | 36.0\% | -4.0\% | 94.7 | 68.4 | 59.9 |
|
93 |
+
| DAMA 33B | 0.105 | 0.172 | 0.059 | 63.7\% | 26.7\% | -3.7\% | 94.8 | 65.7 | 65.0 |
|
94 |
+
| LLaMA 65B | 0.249 | 0.316 | 0.095 | 73.3\% | 35.7\% | 1.4\% | 94.9 | 69.5 | 57.9 |
|
95 |
+
| DAMA 65B | 0.185 | 0.251 | 0.100 | 71.1\% | 27.2\% | 0.8\% | 92.8 | 67.1 | 61.1 |
|
96 |
+
| Bias evaluation for the LLaMA models and their debiased instances. | | | | | | | | | |
|
97 |
+
|
98 |
+
|
99 |
+
### Performance Evaluation
|
100 |
+
|
101 |
+
To check the effect of debiasing on LM capabilities, we compute perplexity on Wikipedia corpus.
|
102 |
+
We also test performance on four language understanding end-tasks: **OpenBookQA**, **AI2 Reasoning Challenge** (Easy and Chalange Sets), and **Massive Multitask Language Understanding**.
|
103 |
+
|
104 |
+
|
105 |
+
### Results
|
106 |
+
|
107 |
+
| | Perpelexity | ARC-C | ARC-E |OBQA | MMLU |
|
108 |
+
|-----------|----------------|----------------|-----------|-----------------|-------|
|
109 |
+
| LLaMA 7B | 26.1 | 42.2 |69.1 | 57.2 | 30.3 |
|
110 |
+
| DAMA 7B | 28.9 | 41.8 | 68.3 | 56.2 | 30.8 |
|
111 |
+
| LLaMA 13B | 19.8 | 44.9 | 70.6 | 55.4 | 43.3 |
|
112 |
+
| DAMA 13B | 21.0 | 44.7 | 70.3 | 56.2 | 43.5 |
|
113 |
+
| LLaMA 33B | 20.5 | 47.4 | 72.9 | 59.2 | 55.7* |
|
114 |
+
| DAMA 33B | 19.6 | 45.2 | 71.6 | 58.2 | 56.1* |
|
115 |
+
| LLaMA 65B | 19.5 | 44.5 | 73.9 | 59.6 | ---* |
|
116 |
+
| DAMA 65B | 20.1 | 40.5 | 67.7 | 57.2 | --- * |
|
117 |
+
|
118 |
+
Performance evaluation for the \llama{} models and their debiased instances.
|
119 |
+
Due to hardware limitations, we could not run MMLU inference for 65B models.
|
120 |
+
In the evaluation of 33B model, we excluded 4\% longest prompts.
|
121 |
|
122 |
## Citation
|
123 |
|
|
|
136 |
}
|
137 |
```
|
138 |
|
139 |
+
## Model Card Author
|
140 |
+
|
141 |
+
[Tomasz Limisiewicz](mailto:limisewicz@ufal.mff.cuni.cz)
|