Upload 13 files
Browse files基于Baichuan2-7B-Chat模型训练的角色扮演LoRA
- Baichuan2-7B-Chat-LoRA/README.md +202 -0
- Baichuan2-7B-Chat-LoRA/adapter_config.json +28 -0
- Baichuan2-7B-Chat-LoRA/adapter_model.safetensors +3 -0
- Baichuan2-7B-Chat-LoRA/optimizer.pt +3 -0
- Baichuan2-7B-Chat-LoRA/rng_state_0.pth +3 -0
- Baichuan2-7B-Chat-LoRA/rng_state_1.pth +3 -0
- Baichuan2-7B-Chat-LoRA/scheduler.pt +3 -0
- Baichuan2-7B-Chat-LoRA/special_tokens_map.json +30 -0
- Baichuan2-7B-Chat-LoRA/tokenization_baichuan.py +258 -0
- Baichuan2-7B-Chat-LoRA/tokenizer.model +3 -0
- Baichuan2-7B-Chat-LoRA/tokenizer_config.json +48 -0
- Baichuan2-7B-Chat-LoRA/trainer_state.json +1461 -0
- Baichuan2-7B-Chat-LoRA/training_args.bin +3 -0
Baichuan2-7B-Chat-LoRA/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../../model/Baichuan2-7B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
Baichuan2-7B-Chat-LoRA/adapter_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../../model/Baichuan2-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"W_pack"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM",
|
26 |
+
"use_dora": false,
|
27 |
+
"use_rslora": false
|
28 |
+
}
|
Baichuan2-7B-Chat-LoRA/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb9d459649b2b17f9ff93594db158324603d9e135a52ff045d1d84038e8465d8
|
3 |
+
size 16785760
|
Baichuan2-7B-Chat-LoRA/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a6e28f59236f89ce8c2aeef895ba517a79d0b887a0afb30ccf13295dc263e85
|
3 |
+
size 33608634
|
Baichuan2-7B-Chat-LoRA/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71792d9986abf333291d25825245eca92628cefa5f54c3852cce3ae98163a606
|
3 |
+
size 14512
|
Baichuan2-7B-Chat-LoRA/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8746eb25faee6c63bdad38e5ccce008abfe09b6a67f278aadc8f5b3e48f5a137
|
3 |
+
size 14512
|
Baichuan2-7B-Chat-LoRA/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e4d5d49cc91a795c622c3ac3492e103654926a37cf202c51456d8430413e83e
|
3 |
+
size 1064
|
Baichuan2-7B-Chat-LoRA/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
Baichuan2-7B-Chat-LoRA/tokenization_baichuan.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import sentencepiece as spm
|
8 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {},
|
18 |
+
"tokenizer_file": {},
|
19 |
+
}
|
20 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
vocab_file (`str`):
|
29 |
+
Path to the vocabulary file.
|
30 |
+
"""
|
31 |
+
|
32 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
33 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
34 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
35 |
+
model_input_names = ["input_ids", "attention_mask"]
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
unk_token="<unk>",
|
41 |
+
bos_token="<s>",
|
42 |
+
eos_token="</s>",
|
43 |
+
pad_token=None,
|
44 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
45 |
+
add_bos_token=True,
|
46 |
+
add_eos_token=False,
|
47 |
+
clean_up_tokenization_spaces=False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
bos_token = (
|
52 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
53 |
+
if isinstance(bos_token, str)
|
54 |
+
else bos_token
|
55 |
+
)
|
56 |
+
eos_token = (
|
57 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
58 |
+
if isinstance(eos_token, str)
|
59 |
+
else eos_token
|
60 |
+
)
|
61 |
+
unk_token = (
|
62 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
63 |
+
if isinstance(unk_token, str)
|
64 |
+
else unk_token
|
65 |
+
)
|
66 |
+
pad_token = (
|
67 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
68 |
+
if isinstance(pad_token, str)
|
69 |
+
else pad_token
|
70 |
+
)
|
71 |
+
|
72 |
+
self.vocab_file = vocab_file
|
73 |
+
self.add_bos_token = add_bos_token
|
74 |
+
self.add_eos_token = add_eos_token
|
75 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
76 |
+
self.sp_model.Load(vocab_file)
|
77 |
+
super().__init__(
|
78 |
+
bos_token=bos_token,
|
79 |
+
eos_token=eos_token,
|
80 |
+
unk_token=unk_token,
|
81 |
+
pad_token=pad_token,
|
82 |
+
add_bos_token=add_bos_token,
|
83 |
+
add_eos_token=add_eos_token,
|
84 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
85 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
86 |
+
**kwargs,
|
87 |
+
)
|
88 |
+
def __getstate__(self):
|
89 |
+
state = self.__dict__.copy()
|
90 |
+
state["sp_model"] = None
|
91 |
+
return state
|
92 |
+
|
93 |
+
def __setstate__(self, d):
|
94 |
+
self.__dict__ = d
|
95 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
96 |
+
self.sp_model.Load(self.vocab_file)
|
97 |
+
|
98 |
+
@property
|
99 |
+
def vocab_size(self):
|
100 |
+
"""Returns vocab size"""
|
101 |
+
return self.sp_model.get_piece_size()
|
102 |
+
|
103 |
+
def get_vocab(self):
|
104 |
+
"""Returns vocab as a dict"""
|
105 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
106 |
+
vocab.update(self.added_tokens_encoder)
|
107 |
+
return vocab
|
108 |
+
|
109 |
+
def _tokenize(self, text):
|
110 |
+
"""Returns a tokenized string."""
|
111 |
+
return self.sp_model.encode(text, out_type=str)
|
112 |
+
|
113 |
+
def _convert_token_to_id(self, token):
|
114 |
+
"""Converts a token (str) in an id using the vocab."""
|
115 |
+
return self.sp_model.piece_to_id(token)
|
116 |
+
|
117 |
+
def _convert_id_to_token(self, index):
|
118 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
119 |
+
token = self.sp_model.IdToPiece(index)
|
120 |
+
return token
|
121 |
+
|
122 |
+
def convert_tokens_to_string(self, tokens):
|
123 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
124 |
+
current_sub_tokens = []
|
125 |
+
out_string = ""
|
126 |
+
prev_is_special = False
|
127 |
+
for i, token in enumerate(tokens):
|
128 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
129 |
+
if token in self.all_special_tokens:
|
130 |
+
if not prev_is_special and i != 0:
|
131 |
+
out_string += " "
|
132 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
133 |
+
prev_is_special = True
|
134 |
+
current_sub_tokens = []
|
135 |
+
else:
|
136 |
+
current_sub_tokens.append(token)
|
137 |
+
prev_is_special = False
|
138 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
139 |
+
return out_string
|
140 |
+
|
141 |
+
def save_vocabulary(
|
142 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
143 |
+
) -> Tuple[str]:
|
144 |
+
"""
|
145 |
+
Save the vocabulary and special tokens file to a directory.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
save_directory (`str`):
|
149 |
+
The directory in which to save the vocabulary.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
`Tuple(str)`: Paths to the files saved.
|
153 |
+
"""
|
154 |
+
if not os.path.isdir(save_directory):
|
155 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
156 |
+
return
|
157 |
+
out_vocab_file = os.path.join(
|
158 |
+
save_directory,
|
159 |
+
(filename_prefix + "-" if filename_prefix else "")
|
160 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
164 |
+
out_vocab_file
|
165 |
+
) and os.path.isfile(self.vocab_file):
|
166 |
+
copyfile(self.vocab_file, out_vocab_file)
|
167 |
+
elif not os.path.isfile(self.vocab_file):
|
168 |
+
with open(out_vocab_file, "wb") as fi:
|
169 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
170 |
+
fi.write(content_spiece_model)
|
171 |
+
|
172 |
+
return (out_vocab_file,)
|
173 |
+
|
174 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
175 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
176 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
177 |
+
|
178 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
179 |
+
|
180 |
+
if token_ids_1 is not None:
|
181 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
182 |
+
|
183 |
+
return output
|
184 |
+
|
185 |
+
def get_special_tokens_mask(
|
186 |
+
self,
|
187 |
+
token_ids_0: List[int],
|
188 |
+
token_ids_1: Optional[List[int]] = None,
|
189 |
+
already_has_special_tokens: bool = False,
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
token_ids_0 (`List[int]`):
|
197 |
+
List of IDs.
|
198 |
+
token_ids_1 (`List[int]`, *optional*):
|
199 |
+
Optional second list of IDs for sequence pairs.
|
200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
205 |
+
"""
|
206 |
+
if already_has_special_tokens:
|
207 |
+
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0,
|
209 |
+
token_ids_1=token_ids_1,
|
210 |
+
already_has_special_tokens=True,
|
211 |
+
)
|
212 |
+
|
213 |
+
bos_token_id = [1] if self.add_bos_token else []
|
214 |
+
eos_token_id = [1] if self.add_eos_token else []
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
218 |
+
return (
|
219 |
+
bos_token_id
|
220 |
+
+ ([0] * len(token_ids_0))
|
221 |
+
+ eos_token_id
|
222 |
+
+ bos_token_id
|
223 |
+
+ ([0] * len(token_ids_1))
|
224 |
+
+ eos_token_id
|
225 |
+
)
|
226 |
+
|
227 |
+
def create_token_type_ids_from_sequences(
|
228 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
229 |
+
) -> List[int]:
|
230 |
+
"""
|
231 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
232 |
+
sequence pair mask has the following format:
|
233 |
+
|
234 |
+
```
|
235 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
236 |
+
| first sequence | second sequence |
|
237 |
+
```
|
238 |
+
|
239 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
240 |
+
|
241 |
+
Args:
|
242 |
+
token_ids_0 (`List[int]`):
|
243 |
+
List of ids.
|
244 |
+
token_ids_1 (`List[int]`, *optional*):
|
245 |
+
Optional second list of IDs for sequence pairs.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
249 |
+
"""
|
250 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
251 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
252 |
+
|
253 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
254 |
+
|
255 |
+
if token_ids_1 is not None:
|
256 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
257 |
+
|
258 |
+
return output
|
Baichuan2-7B-Chat-LoRA/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
Baichuan2-7B-Chat-LoRA/tokenizer_config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"auto_map": {
|
31 |
+
"AutoTokenizer": [
|
32 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
33 |
+
null
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"bos_token": "<s>",
|
37 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<reserved_106>' + content + '<reserved_107>' }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
|
38 |
+
"clean_up_tokenization_spaces": false,
|
39 |
+
"eos_token": "</s>",
|
40 |
+
"model_max_length": 4096,
|
41 |
+
"pad_token": "<unk>",
|
42 |
+
"padding_side": "right",
|
43 |
+
"sp_model_kwargs": {},
|
44 |
+
"split_special_tokens": false,
|
45 |
+
"tokenizer_class": "BaichuanTokenizer",
|
46 |
+
"unk_token": "<unk>",
|
47 |
+
"use_fast": false
|
48 |
+
}
|
Baichuan2-7B-Chat-LoRA/trainer_state.json
ADDED
@@ -0,0 +1,1461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.395761489868164,
|
3 |
+
"best_model_checkpoint": "../../saves/Baichuan2-7B-Chat/lora/sft/checkpoint-2000",
|
4 |
+
"epoch": 7.901234567901234,
|
5 |
+
"eval_steps": 400,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.04,
|
13 |
+
"grad_norm": 1.1405200958251953,
|
14 |
+
"learning_rate": 2.25e-05,
|
15 |
+
"loss": 3.6308,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.08,
|
20 |
+
"grad_norm": 1.766953945159912,
|
21 |
+
"learning_rate": 4.75e-05,
|
22 |
+
"loss": 3.4926,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.12,
|
27 |
+
"grad_norm": 1.2588557004928589,
|
28 |
+
"learning_rate": 4.99984138555282e-05,
|
29 |
+
"loss": 3.2621,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.16,
|
34 |
+
"grad_norm": 0.9718258380889893,
|
35 |
+
"learning_rate": 4.999293114538139e-05,
|
36 |
+
"loss": 3.0924,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.2,
|
41 |
+
"grad_norm": 0.9004219770431519,
|
42 |
+
"learning_rate": 4.998353314622318e-05,
|
43 |
+
"loss": 3.0325,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.24,
|
48 |
+
"grad_norm": 0.7595831751823425,
|
49 |
+
"learning_rate": 4.997022133030516e-05,
|
50 |
+
"loss": 2.9351,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.28,
|
55 |
+
"grad_norm": 0.8930522799491882,
|
56 |
+
"learning_rate": 4.9952997783001254e-05,
|
57 |
+
"loss": 2.8068,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.32,
|
62 |
+
"grad_norm": 0.7985192537307739,
|
63 |
+
"learning_rate": 4.9931865202480996e-05,
|
64 |
+
"loss": 2.8503,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.36,
|
69 |
+
"grad_norm": 0.9129031896591187,
|
70 |
+
"learning_rate": 4.990682689928687e-05,
|
71 |
+
"loss": 2.7241,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.4,
|
76 |
+
"grad_norm": 0.8816404342651367,
|
77 |
+
"learning_rate": 4.9877886795815685e-05,
|
78 |
+
"loss": 2.8525,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.43,
|
83 |
+
"grad_norm": 0.8212659358978271,
|
84 |
+
"learning_rate": 4.98450494257041e-05,
|
85 |
+
"loss": 2.7173,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.47,
|
90 |
+
"grad_norm": 0.9286770224571228,
|
91 |
+
"learning_rate": 4.980831993311844e-05,
|
92 |
+
"loss": 2.7857,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.51,
|
97 |
+
"grad_norm": 0.95149165391922,
|
98 |
+
"learning_rate": 4.976770407194877e-05,
|
99 |
+
"loss": 2.6764,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.55,
|
104 |
+
"grad_norm": 1.1459342241287231,
|
105 |
+
"learning_rate": 4.972320820490759e-05,
|
106 |
+
"loss": 2.7001,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.59,
|
111 |
+
"grad_norm": 1.1330541372299194,
|
112 |
+
"learning_rate": 4.967483930253302e-05,
|
113 |
+
"loss": 2.7024,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.63,
|
118 |
+
"grad_norm": 0.9277874827384949,
|
119 |
+
"learning_rate": 4.962260494209683e-05,
|
120 |
+
"loss": 2.7039,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.67,
|
125 |
+
"grad_norm": 1.0230640172958374,
|
126 |
+
"learning_rate": 4.9566513306417444e-05,
|
127 |
+
"loss": 2.7423,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.71,
|
132 |
+
"grad_norm": 0.9915482997894287,
|
133 |
+
"learning_rate": 4.950657318257805e-05,
|
134 |
+
"loss": 2.7303,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.75,
|
139 |
+
"grad_norm": 1.105600357055664,
|
140 |
+
"learning_rate": 4.944279396055003e-05,
|
141 |
+
"loss": 2.6616,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.79,
|
146 |
+
"grad_norm": 1.1231801509857178,
|
147 |
+
"learning_rate": 4.937518563172196e-05,
|
148 |
+
"loss": 2.655,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.83,
|
153 |
+
"grad_norm": 0.908206582069397,
|
154 |
+
"learning_rate": 4.930375878733445e-05,
|
155 |
+
"loss": 2.6541,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.87,
|
160 |
+
"grad_norm": 1.087323546409607,
|
161 |
+
"learning_rate": 4.922852461682093e-05,
|
162 |
+
"loss": 2.5646,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.91,
|
167 |
+
"grad_norm": 1.0399665832519531,
|
168 |
+
"learning_rate": 4.9149494906054716e-05,
|
169 |
+
"loss": 2.6036,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.95,
|
174 |
+
"grad_norm": 0.9571551084518433,
|
175 |
+
"learning_rate": 4.906668203550279e-05,
|
176 |
+
"loss": 2.6212,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.99,
|
181 |
+
"grad_norm": 0.9485632181167603,
|
182 |
+
"learning_rate": 4.8980098978286215e-05,
|
183 |
+
"loss": 2.6717,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 1.03,
|
188 |
+
"grad_norm": 0.9359139204025269,
|
189 |
+
"learning_rate": 4.888975929814792e-05,
|
190 |
+
"loss": 2.5967,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.07,
|
195 |
+
"grad_norm": 1.2552564144134521,
|
196 |
+
"learning_rate": 4.8795677147327776e-05,
|
197 |
+
"loss": 2.5608,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 1.11,
|
202 |
+
"grad_norm": 0.9426449537277222,
|
203 |
+
"learning_rate": 4.8697867264345616e-05,
|
204 |
+
"loss": 2.5731,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 1.15,
|
209 |
+
"grad_norm": 1.132430076599121,
|
210 |
+
"learning_rate": 4.859634497169233e-05,
|
211 |
+
"loss": 2.5884,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 1.19,
|
216 |
+
"grad_norm": 0.9066994786262512,
|
217 |
+
"learning_rate": 4.849112617342955e-05,
|
218 |
+
"loss": 2.5888,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 1.22,
|
223 |
+
"grad_norm": 1.0188608169555664,
|
224 |
+
"learning_rate": 4.8382227352698115e-05,
|
225 |
+
"loss": 2.5849,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.26,
|
230 |
+
"grad_norm": 1.3850712776184082,
|
231 |
+
"learning_rate": 4.826966556913597e-05,
|
232 |
+
"loss": 2.485,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 1.3,
|
237 |
+
"grad_norm": 1.1342747211456299,
|
238 |
+
"learning_rate": 4.815345845620563e-05,
|
239 |
+
"loss": 2.5624,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 1.34,
|
244 |
+
"grad_norm": 1.0687206983566284,
|
245 |
+
"learning_rate": 4.803362421843177e-05,
|
246 |
+
"loss": 2.5051,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 1.38,
|
251 |
+
"grad_norm": 1.5436629056930542,
|
252 |
+
"learning_rate": 4.7910181628549454e-05,
|
253 |
+
"loss": 2.5185,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.42,
|
258 |
+
"grad_norm": 1.2030800580978394,
|
259 |
+
"learning_rate": 4.77831500245632e-05,
|
260 |
+
"loss": 2.5122,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 1.46,
|
265 |
+
"grad_norm": 1.2365000247955322,
|
266 |
+
"learning_rate": 4.765254930671762e-05,
|
267 |
+
"loss": 2.5704,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 1.5,
|
272 |
+
"grad_norm": 1.1403887271881104,
|
273 |
+
"learning_rate": 4.75183999343799e-05,
|
274 |
+
"loss": 2.5605,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 1.54,
|
279 |
+
"grad_norm": 1.2193725109100342,
|
280 |
+
"learning_rate": 4.738072292283473e-05,
|
281 |
+
"loss": 2.569,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 1.58,
|
286 |
+
"grad_norm": 1.4231560230255127,
|
287 |
+
"learning_rate": 4.723953983999215e-05,
|
288 |
+
"loss": 2.4809,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 1.58,
|
293 |
+
"eval_loss": 2.4551122188568115,
|
294 |
+
"eval_runtime": 134.6274,
|
295 |
+
"eval_samples_per_second": 6.685,
|
296 |
+
"eval_steps_per_second": 3.343,
|
297 |
+
"step": 400
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 1.62,
|
301 |
+
"grad_norm": 1.26221764087677,
|
302 |
+
"learning_rate": 4.70948728030088e-05,
|
303 |
+
"loss": 2.6339,
|
304 |
+
"step": 410
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 1.66,
|
308 |
+
"grad_norm": 1.2207887172698975,
|
309 |
+
"learning_rate": 4.694674447482312e-05,
|
310 |
+
"loss": 2.5877,
|
311 |
+
"step": 420
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 1.7,
|
315 |
+
"grad_norm": 1.2746591567993164,
|
316 |
+
"learning_rate": 4.679517806060509e-05,
|
317 |
+
"loss": 2.5866,
|
318 |
+
"step": 430
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 1.74,
|
322 |
+
"grad_norm": 1.774005651473999,
|
323 |
+
"learning_rate": 4.664019730412101e-05,
|
324 |
+
"loss": 2.5073,
|
325 |
+
"step": 440
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 1.78,
|
329 |
+
"grad_norm": 1.4896618127822876,
|
330 |
+
"learning_rate": 4.648182648401389e-05,
|
331 |
+
"loss": 2.4688,
|
332 |
+
"step": 450
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 1.82,
|
336 |
+
"grad_norm": 1.3457367420196533,
|
337 |
+
"learning_rate": 4.6320090410000027e-05,
|
338 |
+
"loss": 2.527,
|
339 |
+
"step": 460
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.86,
|
343 |
+
"grad_norm": 1.2498492002487183,
|
344 |
+
"learning_rate": 4.615501441898248e-05,
|
345 |
+
"loss": 2.625,
|
346 |
+
"step": 470
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 1.9,
|
350 |
+
"grad_norm": 1.3643558025360107,
|
351 |
+
"learning_rate": 4.598662437108186e-05,
|
352 |
+
"loss": 2.4755,
|
353 |
+
"step": 480
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 1.94,
|
357 |
+
"grad_norm": 1.198166847229004,
|
358 |
+
"learning_rate": 4.581494664558518e-05,
|
359 |
+
"loss": 2.5688,
|
360 |
+
"step": 490
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 1.98,
|
364 |
+
"grad_norm": 3.3917434215545654,
|
365 |
+
"learning_rate": 4.564000813681342e-05,
|
366 |
+
"loss": 2.5182,
|
367 |
+
"step": 500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 2.01,
|
371 |
+
"grad_norm": 1.562139630317688,
|
372 |
+
"learning_rate": 4.546183624990832e-05,
|
373 |
+
"loss": 2.4533,
|
374 |
+
"step": 510
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 2.05,
|
378 |
+
"grad_norm": 1.1284795999526978,
|
379 |
+
"learning_rate": 4.528045889653927e-05,
|
380 |
+
"loss": 2.4901,
|
381 |
+
"step": 520
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 2.09,
|
385 |
+
"grad_norm": 1.7664827108383179,
|
386 |
+
"learning_rate": 4.509590449053074e-05,
|
387 |
+
"loss": 2.5075,
|
388 |
+
"step": 530
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 2.13,
|
392 |
+
"grad_norm": 1.6162073612213135,
|
393 |
+
"learning_rate": 4.49082019434111e-05,
|
394 |
+
"loss": 2.4769,
|
395 |
+
"step": 540
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 2.17,
|
399 |
+
"grad_norm": 1.3468163013458252,
|
400 |
+
"learning_rate": 4.471738065988347e-05,
|
401 |
+
"loss": 2.4979,
|
402 |
+
"step": 550
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 2.21,
|
406 |
+
"grad_norm": 1.0762629508972168,
|
407 |
+
"learning_rate": 4.452347053321926e-05,
|
408 |
+
"loss": 2.5436,
|
409 |
+
"step": 560
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 2.25,
|
413 |
+
"grad_norm": 1.1567480564117432,
|
414 |
+
"learning_rate": 4.432650194057527e-05,
|
415 |
+
"loss": 2.5454,
|
416 |
+
"step": 570
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 2.29,
|
420 |
+
"grad_norm": 1.419041395187378,
|
421 |
+
"learning_rate": 4.412650573823489e-05,
|
422 |
+
"loss": 2.4681,
|
423 |
+
"step": 580
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 2.33,
|
427 |
+
"grad_norm": 1.2923465967178345,
|
428 |
+
"learning_rate": 4.392351325677433e-05,
|
429 |
+
"loss": 2.565,
|
430 |
+
"step": 590
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 2.37,
|
434 |
+
"grad_norm": 1.2892262935638428,
|
435 |
+
"learning_rate": 4.371755629615442e-05,
|
436 |
+
"loss": 2.5258,
|
437 |
+
"step": 600
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 2.41,
|
441 |
+
"grad_norm": 1.467966914176941,
|
442 |
+
"learning_rate": 4.3508667120739046e-05,
|
443 |
+
"loss": 2.5776,
|
444 |
+
"step": 610
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 2.45,
|
448 |
+
"grad_norm": 1.2278165817260742,
|
449 |
+
"learning_rate": 4.329687845424069e-05,
|
450 |
+
"loss": 2.4175,
|
451 |
+
"step": 620
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 2.49,
|
455 |
+
"grad_norm": 1.3225311040878296,
|
456 |
+
"learning_rate": 4.308222347459411e-05,
|
457 |
+
"loss": 2.4561,
|
458 |
+
"step": 630
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 2.53,
|
462 |
+
"grad_norm": 1.2582958936691284,
|
463 |
+
"learning_rate": 4.286473580875878e-05,
|
464 |
+
"loss": 2.3885,
|
465 |
+
"step": 640
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 2.57,
|
469 |
+
"grad_norm": 1.206189751625061,
|
470 |
+
"learning_rate": 4.264444952745108e-05,
|
471 |
+
"loss": 2.5041,
|
472 |
+
"step": 650
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 2.61,
|
476 |
+
"grad_norm": 1.9777090549468994,
|
477 |
+
"learning_rate": 4.242139913980686e-05,
|
478 |
+
"loss": 2.4763,
|
479 |
+
"step": 660
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 2.65,
|
483 |
+
"grad_norm": 1.91414475440979,
|
484 |
+
"learning_rate": 4.219561958797543e-05,
|
485 |
+
"loss": 2.37,
|
486 |
+
"step": 670
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 2.69,
|
490 |
+
"grad_norm": 1.0806653499603271,
|
491 |
+
"learning_rate": 4.196714624164565e-05,
|
492 |
+
"loss": 2.5985,
|
493 |
+
"step": 680
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 2.73,
|
497 |
+
"grad_norm": 1.2435009479522705,
|
498 |
+
"learning_rate": 4.1736014892505064e-05,
|
499 |
+
"loss": 2.4765,
|
500 |
+
"step": 690
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 2.77,
|
504 |
+
"grad_norm": 1.3920471668243408,
|
505 |
+
"learning_rate": 4.150226174863292e-05,
|
506 |
+
"loss": 2.4446,
|
507 |
+
"step": 700
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 2.8,
|
511 |
+
"grad_norm": 1.949141263961792,
|
512 |
+
"learning_rate": 4.126592342882795e-05,
|
513 |
+
"loss": 2.4979,
|
514 |
+
"step": 710
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 2.84,
|
518 |
+
"grad_norm": 1.1306403875350952,
|
519 |
+
"learning_rate": 4.1027036956871854e-05,
|
520 |
+
"loss": 2.4096,
|
521 |
+
"step": 720
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 2.88,
|
525 |
+
"grad_norm": 0.9906802773475647,
|
526 |
+
"learning_rate": 4.078563975572928e-05,
|
527 |
+
"loss": 2.5409,
|
528 |
+
"step": 730
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 2.92,
|
532 |
+
"grad_norm": 1.4917031526565552,
|
533 |
+
"learning_rate": 4.054176964168528e-05,
|
534 |
+
"loss": 2.4508,
|
535 |
+
"step": 740
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 2.96,
|
539 |
+
"grad_norm": 1.554909110069275,
|
540 |
+
"learning_rate": 4.029546481842123e-05,
|
541 |
+
"loss": 2.4673,
|
542 |
+
"step": 750
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 3.0,
|
546 |
+
"grad_norm": 1.2943602800369263,
|
547 |
+
"learning_rate": 4.004676387102995e-05,
|
548 |
+
"loss": 2.4801,
|
549 |
+
"step": 760
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 3.04,
|
553 |
+
"grad_norm": 1.301687240600586,
|
554 |
+
"learning_rate": 3.9795705759971116e-05,
|
555 |
+
"loss": 2.4779,
|
556 |
+
"step": 770
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 3.08,
|
560 |
+
"grad_norm": 1.2175750732421875,
|
561 |
+
"learning_rate": 3.9542329814967914e-05,
|
562 |
+
"loss": 2.3964,
|
563 |
+
"step": 780
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 3.12,
|
567 |
+
"grad_norm": 2.502758502960205,
|
568 |
+
"learning_rate": 3.92866757288458e-05,
|
569 |
+
"loss": 2.4044,
|
570 |
+
"step": 790
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 3.16,
|
574 |
+
"grad_norm": 1.508583664894104,
|
575 |
+
"learning_rate": 3.9028783551314347e-05,
|
576 |
+
"loss": 2.5229,
|
577 |
+
"step": 800
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 3.16,
|
581 |
+
"eval_loss": 2.413785696029663,
|
582 |
+
"eval_runtime": 133.2078,
|
583 |
+
"eval_samples_per_second": 6.756,
|
584 |
+
"eval_steps_per_second": 3.378,
|
585 |
+
"step": 800
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 3.2,
|
589 |
+
"grad_norm": 1.3288512229919434,
|
590 |
+
"learning_rate": 3.876869368269327e-05,
|
591 |
+
"loss": 2.4517,
|
592 |
+
"step": 810
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 3.24,
|
596 |
+
"grad_norm": 1.4469561576843262,
|
597 |
+
"learning_rate": 3.850644686758346e-05,
|
598 |
+
"loss": 2.5377,
|
599 |
+
"step": 820
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 3.28,
|
603 |
+
"grad_norm": 1.560353398323059,
|
604 |
+
"learning_rate": 3.82420841884841e-05,
|
605 |
+
"loss": 2.3569,
|
606 |
+
"step": 830
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 3.32,
|
610 |
+
"grad_norm": 1.9207900762557983,
|
611 |
+
"learning_rate": 3.7975647059356875e-05,
|
612 |
+
"loss": 2.4131,
|
613 |
+
"step": 840
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 3.36,
|
617 |
+
"grad_norm": 1.685535192489624,
|
618 |
+
"learning_rate": 3.770717721913819e-05,
|
619 |
+
"loss": 2.5124,
|
620 |
+
"step": 850
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 3.4,
|
624 |
+
"grad_norm": 1.3592054843902588,
|
625 |
+
"learning_rate": 3.743671672520054e-05,
|
626 |
+
"loss": 2.3343,
|
627 |
+
"step": 860
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 3.44,
|
631 |
+
"grad_norm": 1.9445059299468994,
|
632 |
+
"learning_rate": 3.716430794676402e-05,
|
633 |
+
"loss": 2.4614,
|
634 |
+
"step": 870
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 3.48,
|
638 |
+
"grad_norm": 1.6313419342041016,
|
639 |
+
"learning_rate": 3.688999355825887e-05,
|
640 |
+
"loss": 2.4678,
|
641 |
+
"step": 880
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 3.52,
|
645 |
+
"grad_norm": 2.071474313735962,
|
646 |
+
"learning_rate": 3.661381653264031e-05,
|
647 |
+
"loss": 2.4016,
|
648 |
+
"step": 890
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 3.56,
|
652 |
+
"grad_norm": 6.210580825805664,
|
653 |
+
"learning_rate": 3.633582013465658e-05,
|
654 |
+
"loss": 2.3772,
|
655 |
+
"step": 900
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 3.6,
|
659 |
+
"grad_norm": 1.459627628326416,
|
660 |
+
"learning_rate": 3.605604791407124e-05,
|
661 |
+
"loss": 2.4438,
|
662 |
+
"step": 910
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 3.63,
|
666 |
+
"grad_norm": 1.3812425136566162,
|
667 |
+
"learning_rate": 3.577454369884086e-05,
|
668 |
+
"loss": 2.4352,
|
669 |
+
"step": 920
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 3.67,
|
673 |
+
"grad_norm": 1.443032145500183,
|
674 |
+
"learning_rate": 3.549135158824913e-05,
|
675 |
+
"loss": 2.3374,
|
676 |
+
"step": 930
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 3.71,
|
680 |
+
"grad_norm": 2.8968636989593506,
|
681 |
+
"learning_rate": 3.520651594599842e-05,
|
682 |
+
"loss": 2.3911,
|
683 |
+
"step": 940
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 3.75,
|
687 |
+
"grad_norm": 1.7020437717437744,
|
688 |
+
"learning_rate": 3.4920081393259955e-05,
|
689 |
+
"loss": 2.5022,
|
690 |
+
"step": 950
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 3.79,
|
694 |
+
"grad_norm": 1.4983431100845337,
|
695 |
+
"learning_rate": 3.463209280168365e-05,
|
696 |
+
"loss": 2.4919,
|
697 |
+
"step": 960
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 3.83,
|
701 |
+
"grad_norm": 1.527735948562622,
|
702 |
+
"learning_rate": 3.434259528636872e-05,
|
703 |
+
"loss": 2.423,
|
704 |
+
"step": 970
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 3.87,
|
708 |
+
"grad_norm": 1.3608715534210205,
|
709 |
+
"learning_rate": 3.405163419879611e-05,
|
710 |
+
"loss": 2.4668,
|
711 |
+
"step": 980
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 3.91,
|
715 |
+
"grad_norm": 1.6936486959457397,
|
716 |
+
"learning_rate": 3.37592551197239e-05,
|
717 |
+
"loss": 2.4736,
|
718 |
+
"step": 990
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 3.95,
|
722 |
+
"grad_norm": 1.6318974494934082,
|
723 |
+
"learning_rate": 3.34655038520469e-05,
|
724 |
+
"loss": 2.4683,
|
725 |
+
"step": 1000
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 3.99,
|
729 |
+
"grad_norm": 1.3295326232910156,
|
730 |
+
"learning_rate": 3.317042641362126e-05,
|
731 |
+
"loss": 2.3889,
|
732 |
+
"step": 1010
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 4.03,
|
736 |
+
"grad_norm": 1.5521697998046875,
|
737 |
+
"learning_rate": 3.2874069030055534e-05,
|
738 |
+
"loss": 2.4913,
|
739 |
+
"step": 1020
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 4.07,
|
743 |
+
"grad_norm": 1.2893122434616089,
|
744 |
+
"learning_rate": 3.257647812746922e-05,
|
745 |
+
"loss": 2.4289,
|
746 |
+
"step": 1030
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 4.11,
|
750 |
+
"grad_norm": 1.4011497497558594,
|
751 |
+
"learning_rate": 3.227770032521975e-05,
|
752 |
+
"loss": 2.4604,
|
753 |
+
"step": 1040
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 4.15,
|
757 |
+
"grad_norm": 1.7100721597671509,
|
758 |
+
"learning_rate": 3.1977782428599364e-05,
|
759 |
+
"loss": 2.3778,
|
760 |
+
"step": 1050
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 4.19,
|
764 |
+
"grad_norm": 1.4909169673919678,
|
765 |
+
"learning_rate": 3.1676771421502746e-05,
|
766 |
+
"loss": 2.4634,
|
767 |
+
"step": 1060
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 4.23,
|
771 |
+
"grad_norm": 2.009910821914673,
|
772 |
+
"learning_rate": 3.137471445906675e-05,
|
773 |
+
"loss": 2.4035,
|
774 |
+
"step": 1070
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 4.27,
|
778 |
+
"grad_norm": 1.4564893245697021,
|
779 |
+
"learning_rate": 3.107165886028326e-05,
|
780 |
+
"loss": 2.4581,
|
781 |
+
"step": 1080
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 4.31,
|
785 |
+
"grad_norm": 1.6162135601043701,
|
786 |
+
"learning_rate": 3.076765210058638e-05,
|
787 |
+
"loss": 2.4216,
|
788 |
+
"step": 1090
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 4.35,
|
792 |
+
"grad_norm": 1.469684362411499,
|
793 |
+
"learning_rate": 3.046274180441512e-05,
|
794 |
+
"loss": 2.3395,
|
795 |
+
"step": 1100
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 4.39,
|
799 |
+
"grad_norm": 2.3828556537628174,
|
800 |
+
"learning_rate": 3.015697573775283e-05,
|
801 |
+
"loss": 2.4602,
|
802 |
+
"step": 1110
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 4.42,
|
806 |
+
"grad_norm": 1.5302035808563232,
|
807 |
+
"learning_rate": 2.9850401800644257e-05,
|
808 |
+
"loss": 2.4116,
|
809 |
+
"step": 1120
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 4.46,
|
813 |
+
"grad_norm": 2.1008236408233643,
|
814 |
+
"learning_rate": 2.9543068019691833e-05,
|
815 |
+
"loss": 2.2545,
|
816 |
+
"step": 1130
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 4.5,
|
820 |
+
"grad_norm": 1.4228670597076416,
|
821 |
+
"learning_rate": 2.923502254053193e-05,
|
822 |
+
"loss": 2.4589,
|
823 |
+
"step": 1140
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 4.54,
|
827 |
+
"grad_norm": 1.4719305038452148,
|
828 |
+
"learning_rate": 2.892631362029265e-05,
|
829 |
+
"loss": 2.3918,
|
830 |
+
"step": 1150
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 4.58,
|
834 |
+
"grad_norm": 1.771802544593811,
|
835 |
+
"learning_rate": 2.8616989620034013e-05,
|
836 |
+
"loss": 2.3929,
|
837 |
+
"step": 1160
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 4.62,
|
841 |
+
"grad_norm": 1.5566627979278564,
|
842 |
+
"learning_rate": 2.83070989971719e-05,
|
843 |
+
"loss": 2.3442,
|
844 |
+
"step": 1170
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 4.66,
|
848 |
+
"grad_norm": 1.8499693870544434,
|
849 |
+
"learning_rate": 2.7996690297886995e-05,
|
850 |
+
"loss": 2.4422,
|
851 |
+
"step": 1180
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 4.7,
|
855 |
+
"grad_norm": 1.5866152048110962,
|
856 |
+
"learning_rate": 2.768581214951964e-05,
|
857 |
+
"loss": 2.4489,
|
858 |
+
"step": 1190
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 4.74,
|
862 |
+
"grad_norm": 1.5571675300598145,
|
863 |
+
"learning_rate": 2.737451325295214e-05,
|
864 |
+
"loss": 2.3453,
|
865 |
+
"step": 1200
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 4.74,
|
869 |
+
"eval_loss": 2.4050841331481934,
|
870 |
+
"eval_runtime": 133.8041,
|
871 |
+
"eval_samples_per_second": 6.726,
|
872 |
+
"eval_steps_per_second": 3.363,
|
873 |
+
"step": 1200
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 4.78,
|
877 |
+
"grad_norm": 1.371382474899292,
|
878 |
+
"learning_rate": 2.706284237497948e-05,
|
879 |
+
"loss": 2.3094,
|
880 |
+
"step": 1210
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 4.82,
|
884 |
+
"grad_norm": 1.5894430875778198,
|
885 |
+
"learning_rate": 2.675084834066968e-05,
|
886 |
+
"loss": 2.352,
|
887 |
+
"step": 1220
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 4.86,
|
891 |
+
"grad_norm": 1.9093360900878906,
|
892 |
+
"learning_rate": 2.6438580025715138e-05,
|
893 |
+
"loss": 2.3941,
|
894 |
+
"step": 1230
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 4.9,
|
898 |
+
"grad_norm": 1.7057812213897705,
|
899 |
+
"learning_rate": 2.612608634877588e-05,
|
900 |
+
"loss": 2.408,
|
901 |
+
"step": 1240
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 4.94,
|
905 |
+
"grad_norm": 4.448972225189209,
|
906 |
+
"learning_rate": 2.5813416263816227e-05,
|
907 |
+
"loss": 2.4234,
|
908 |
+
"step": 1250
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 4.98,
|
912 |
+
"grad_norm": 1.4726636409759521,
|
913 |
+
"learning_rate": 2.550061875243584e-05,
|
914 |
+
"loss": 2.4223,
|
915 |
+
"step": 1260
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 5.02,
|
919 |
+
"grad_norm": 1.3479527235031128,
|
920 |
+
"learning_rate": 2.5187742816196487e-05,
|
921 |
+
"loss": 2.3444,
|
922 |
+
"step": 1270
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 5.06,
|
926 |
+
"grad_norm": 1.584678292274475,
|
927 |
+
"learning_rate": 2.487483746894563e-05,
|
928 |
+
"loss": 2.4881,
|
929 |
+
"step": 1280
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 5.1,
|
933 |
+
"grad_norm": 1.5328477621078491,
|
934 |
+
"learning_rate": 2.4561951729138167e-05,
|
935 |
+
"loss": 2.3752,
|
936 |
+
"step": 1290
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 5.14,
|
940 |
+
"grad_norm": 2.0441181659698486,
|
941 |
+
"learning_rate": 2.4249134612157346e-05,
|
942 |
+
"loss": 2.4605,
|
943 |
+
"step": 1300
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 5.18,
|
947 |
+
"grad_norm": 1.5883582830429077,
|
948 |
+
"learning_rate": 2.393643512263627e-05,
|
949 |
+
"loss": 2.3095,
|
950 |
+
"step": 1310
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 5.21,
|
954 |
+
"grad_norm": 1.6504632234573364,
|
955 |
+
"learning_rate": 2.3623902246780994e-05,
|
956 |
+
"loss": 2.3773,
|
957 |
+
"step": 1320
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 5.25,
|
961 |
+
"grad_norm": 2.101841926574707,
|
962 |
+
"learning_rate": 2.331158494469657e-05,
|
963 |
+
"loss": 2.3966,
|
964 |
+
"step": 1330
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 5.29,
|
968 |
+
"grad_norm": 1.5765920877456665,
|
969 |
+
"learning_rate": 2.2999532142717174e-05,
|
970 |
+
"loss": 2.4361,
|
971 |
+
"step": 1340
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 5.33,
|
975 |
+
"grad_norm": 2.0858278274536133,
|
976 |
+
"learning_rate": 2.268779272574146e-05,
|
977 |
+
"loss": 2.3576,
|
978 |
+
"step": 1350
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 5.37,
|
982 |
+
"grad_norm": 1.7046364545822144,
|
983 |
+
"learning_rate": 2.2376415529574525e-05,
|
984 |
+
"loss": 2.4298,
|
985 |
+
"step": 1360
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 5.41,
|
989 |
+
"grad_norm": 1.7461296319961548,
|
990 |
+
"learning_rate": 2.206544933327742e-05,
|
991 |
+
"loss": 2.3175,
|
992 |
+
"step": 1370
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 5.45,
|
996 |
+
"grad_norm": 2.0052788257598877,
|
997 |
+
"learning_rate": 2.1754942851525677e-05,
|
998 |
+
"loss": 2.3432,
|
999 |
+
"step": 1380
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 5.49,
|
1003 |
+
"grad_norm": 1.8527193069458008,
|
1004 |
+
"learning_rate": 2.1444944726977857e-05,
|
1005 |
+
"loss": 2.2937,
|
1006 |
+
"step": 1390
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 5.53,
|
1010 |
+
"grad_norm": 1.8431612253189087,
|
1011 |
+
"learning_rate": 2.1135503522655374e-05,
|
1012 |
+
"loss": 2.3031,
|
1013 |
+
"step": 1400
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 5.57,
|
1017 |
+
"grad_norm": 1.8249716758728027,
|
1018 |
+
"learning_rate": 2.082666771433484e-05,
|
1019 |
+
"loss": 2.4171,
|
1020 |
+
"step": 1410
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 5.61,
|
1024 |
+
"grad_norm": 1.6596335172653198,
|
1025 |
+
"learning_rate": 2.0518485682954025e-05,
|
1026 |
+
"loss": 2.4917,
|
1027 |
+
"step": 1420
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 5.65,
|
1031 |
+
"grad_norm": 1.8855317831039429,
|
1032 |
+
"learning_rate": 2.0211005707032733e-05,
|
1033 |
+
"loss": 2.3648,
|
1034 |
+
"step": 1430
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 5.69,
|
1038 |
+
"grad_norm": 1.6180534362792969,
|
1039 |
+
"learning_rate": 1.9904275955109652e-05,
|
1040 |
+
"loss": 2.4083,
|
1041 |
+
"step": 1440
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 5.73,
|
1045 |
+
"grad_norm": 1.5273176431655884,
|
1046 |
+
"learning_rate": 1.959834447819649e-05,
|
1047 |
+
"loss": 2.4187,
|
1048 |
+
"step": 1450
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 5.77,
|
1052 |
+
"grad_norm": 1.8004169464111328,
|
1053 |
+
"learning_rate": 1.9293259202250517e-05,
|
1054 |
+
"loss": 2.4147,
|
1055 |
+
"step": 1460
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 5.81,
|
1059 |
+
"grad_norm": 1.641048550605774,
|
1060 |
+
"learning_rate": 1.8989067920666633e-05,
|
1061 |
+
"loss": 2.3738,
|
1062 |
+
"step": 1470
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 5.85,
|
1066 |
+
"grad_norm": 1.586946964263916,
|
1067 |
+
"learning_rate": 1.8685818286790325e-05,
|
1068 |
+
"loss": 2.4126,
|
1069 |
+
"step": 1480
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 5.89,
|
1073 |
+
"grad_norm": 2.0825576782226562,
|
1074 |
+
"learning_rate": 1.8383557806452433e-05,
|
1075 |
+
"loss": 2.3781,
|
1076 |
+
"step": 1490
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 5.93,
|
1080 |
+
"grad_norm": 1.7725000381469727,
|
1081 |
+
"learning_rate": 1.808233383052709e-05,
|
1082 |
+
"loss": 2.2956,
|
1083 |
+
"step": 1500
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 5.97,
|
1087 |
+
"grad_norm": 1.7009029388427734,
|
1088 |
+
"learning_rate": 1.7782193547513974e-05,
|
1089 |
+
"loss": 2.3416,
|
1090 |
+
"step": 1510
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 6.0,
|
1094 |
+
"grad_norm": 1.7379595041275024,
|
1095 |
+
"learning_rate": 1.7483183976145894e-05,
|
1096 |
+
"loss": 2.3466,
|
1097 |
+
"step": 1520
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 6.04,
|
1101 |
+
"grad_norm": 1.678911805152893,
|
1102 |
+
"learning_rate": 1.7185351958023082e-05,
|
1103 |
+
"loss": 2.4167,
|
1104 |
+
"step": 1530
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 6.08,
|
1108 |
+
"grad_norm": 1.663160800933838,
|
1109 |
+
"learning_rate": 1.6888744150275148e-05,
|
1110 |
+
"loss": 2.4156,
|
1111 |
+
"step": 1540
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 6.12,
|
1115 |
+
"grad_norm": 1.5950766801834106,
|
1116 |
+
"learning_rate": 1.6593407018251973e-05,
|
1117 |
+
"loss": 2.3795,
|
1118 |
+
"step": 1550
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 6.16,
|
1122 |
+
"grad_norm": 1.5608184337615967,
|
1123 |
+
"learning_rate": 1.6299386828244645e-05,
|
1124 |
+
"loss": 2.3945,
|
1125 |
+
"step": 1560
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 6.2,
|
1129 |
+
"grad_norm": 2.6302921772003174,
|
1130 |
+
"learning_rate": 1.60067296402376e-05,
|
1131 |
+
"loss": 2.3195,
|
1132 |
+
"step": 1570
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 6.24,
|
1136 |
+
"grad_norm": 1.7563198804855347,
|
1137 |
+
"learning_rate": 1.5715481300692993e-05,
|
1138 |
+
"loss": 2.3551,
|
1139 |
+
"step": 1580
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 6.28,
|
1143 |
+
"grad_norm": 2.2081732749938965,
|
1144 |
+
"learning_rate": 1.5425687435368648e-05,
|
1145 |
+
"loss": 2.3597,
|
1146 |
+
"step": 1590
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 6.32,
|
1150 |
+
"grad_norm": 2.120513916015625,
|
1151 |
+
"learning_rate": 1.5137393442170461e-05,
|
1152 |
+
"loss": 2.3758,
|
1153 |
+
"step": 1600
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 6.32,
|
1157 |
+
"eval_loss": 2.400667428970337,
|
1158 |
+
"eval_runtime": 133.4489,
|
1159 |
+
"eval_samples_per_second": 6.744,
|
1160 |
+
"eval_steps_per_second": 3.372,
|
1161 |
+
"step": 1600
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 6.36,
|
1165 |
+
"grad_norm": 1.9258661270141602,
|
1166 |
+
"learning_rate": 1.4850644484040584e-05,
|
1167 |
+
"loss": 2.3852,
|
1168 |
+
"step": 1610
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 6.4,
|
1172 |
+
"grad_norm": 1.749426007270813,
|
1173 |
+
"learning_rate": 1.4565485481882396e-05,
|
1174 |
+
"loss": 2.3067,
|
1175 |
+
"step": 1620
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 6.44,
|
1179 |
+
"grad_norm": 1.9953992366790771,
|
1180 |
+
"learning_rate": 1.4281961107523336e-05,
|
1181 |
+
"loss": 2.3013,
|
1182 |
+
"step": 1630
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 6.48,
|
1186 |
+
"grad_norm": 2.156952381134033,
|
1187 |
+
"learning_rate": 1.4000115776716849e-05,
|
1188 |
+
"loss": 2.3504,
|
1189 |
+
"step": 1640
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 6.52,
|
1193 |
+
"grad_norm": 2.4170098304748535,
|
1194 |
+
"learning_rate": 1.371999364218437e-05,
|
1195 |
+
"loss": 2.3035,
|
1196 |
+
"step": 1650
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 6.56,
|
1200 |
+
"grad_norm": 2.338102340698242,
|
1201 |
+
"learning_rate": 1.3441638586698527e-05,
|
1202 |
+
"loss": 2.2753,
|
1203 |
+
"step": 1660
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 6.6,
|
1207 |
+
"grad_norm": 2.286085605621338,
|
1208 |
+
"learning_rate": 1.3165094216208696e-05,
|
1209 |
+
"loss": 2.3644,
|
1210 |
+
"step": 1670
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 6.64,
|
1214 |
+
"grad_norm": 2.505244016647339,
|
1215 |
+
"learning_rate": 1.2890403853009847e-05,
|
1216 |
+
"loss": 2.371,
|
1217 |
+
"step": 1680
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 6.68,
|
1221 |
+
"grad_norm": 1.636423110961914,
|
1222 |
+
"learning_rate": 1.2617610528955814e-05,
|
1223 |
+
"loss": 2.3602,
|
1224 |
+
"step": 1690
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 6.72,
|
1228 |
+
"grad_norm": 1.6253471374511719,
|
1229 |
+
"learning_rate": 1.234675697871818e-05,
|
1230 |
+
"loss": 2.3858,
|
1231 |
+
"step": 1700
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 6.76,
|
1235 |
+
"grad_norm": 1.9490761756896973,
|
1236 |
+
"learning_rate": 1.2077885633091595e-05,
|
1237 |
+
"loss": 2.2864,
|
1238 |
+
"step": 1710
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 6.8,
|
1242 |
+
"grad_norm": 1.7611408233642578,
|
1243 |
+
"learning_rate": 1.1811038612346728e-05,
|
1244 |
+
"loss": 2.2646,
|
1245 |
+
"step": 1720
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 6.83,
|
1249 |
+
"grad_norm": 1.9415556192398071,
|
1250 |
+
"learning_rate": 1.154625771963192e-05,
|
1251 |
+
"loss": 2.311,
|
1252 |
+
"step": 1730
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 6.87,
|
1256 |
+
"grad_norm": 2.0429086685180664,
|
1257 |
+
"learning_rate": 1.1283584434424455e-05,
|
1258 |
+
"loss": 2.3504,
|
1259 |
+
"step": 1740
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 6.91,
|
1263 |
+
"grad_norm": 2.0815227031707764,
|
1264 |
+
"learning_rate": 1.102305990603257e-05,
|
1265 |
+
"loss": 2.3426,
|
1266 |
+
"step": 1750
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 6.95,
|
1270 |
+
"grad_norm": 1.8559825420379639,
|
1271 |
+
"learning_rate": 1.0764724947149132e-05,
|
1272 |
+
"loss": 2.3183,
|
1273 |
+
"step": 1760
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 6.99,
|
1277 |
+
"grad_norm": 2.6576716899871826,
|
1278 |
+
"learning_rate": 1.0508620027458158e-05,
|
1279 |
+
"loss": 2.378,
|
1280 |
+
"step": 1770
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 7.03,
|
1284 |
+
"grad_norm": 1.9085129499435425,
|
1285 |
+
"learning_rate": 1.0254785267294958e-05,
|
1286 |
+
"loss": 2.3286,
|
1287 |
+
"step": 1780
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 7.07,
|
1291 |
+
"grad_norm": 1.899032711982727,
|
1292 |
+
"learning_rate": 1.0003260431361039e-05,
|
1293 |
+
"loss": 2.3615,
|
1294 |
+
"step": 1790
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 7.11,
|
1298 |
+
"grad_norm": 1.8750344514846802,
|
1299 |
+
"learning_rate": 9.75408492249478e-06,
|
1300 |
+
"loss": 2.3459,
|
1301 |
+
"step": 1800
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 7.15,
|
1305 |
+
"grad_norm": 2.1118319034576416,
|
1306 |
+
"learning_rate": 9.507297775498707e-06,
|
1307 |
+
"loss": 2.4204,
|
1308 |
+
"step": 1810
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 7.19,
|
1312 |
+
"grad_norm": 1.971839189529419,
|
1313 |
+
"learning_rate": 9.262937651024462e-06,
|
1314 |
+
"loss": 2.3497,
|
1315 |
+
"step": 1820
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"epoch": 7.23,
|
1319 |
+
"grad_norm": 2.0775558948516846,
|
1320 |
+
"learning_rate": 9.02104282951641e-06,
|
1321 |
+
"loss": 2.3027,
|
1322 |
+
"step": 1830
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 7.27,
|
1326 |
+
"grad_norm": 2.3251700401306152,
|
1327 |
+
"learning_rate": 8.781651205214775e-06,
|
1328 |
+
"loss": 2.3317,
|
1329 |
+
"step": 1840
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 7.31,
|
1333 |
+
"grad_norm": 2.0580742359161377,
|
1334 |
+
"learning_rate": 8.544800280219282e-06,
|
1335 |
+
"loss": 2.3516,
|
1336 |
+
"step": 1850
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 7.35,
|
1340 |
+
"grad_norm": 2.2532641887664795,
|
1341 |
+
"learning_rate": 8.310527158614204e-06,
|
1342 |
+
"loss": 2.2712,
|
1343 |
+
"step": 1860
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 7.39,
|
1347 |
+
"grad_norm": 2.1395344734191895,
|
1348 |
+
"learning_rate": 8.07886854065585e-06,
|
1349 |
+
"loss": 2.3357,
|
1350 |
+
"step": 1870
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 7.43,
|
1354 |
+
"grad_norm": 1.6818287372589111,
|
1355 |
+
"learning_rate": 7.849860717023217e-06,
|
1356 |
+
"loss": 2.3414,
|
1357 |
+
"step": 1880
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 7.47,
|
1361 |
+
"grad_norm": 2.29758882522583,
|
1362 |
+
"learning_rate": 7.62353956313284e-06,
|
1363 |
+
"loss": 2.2435,
|
1364 |
+
"step": 1890
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 7.51,
|
1368 |
+
"grad_norm": 2.3084988594055176,
|
1369 |
+
"learning_rate": 7.3999405335187124e-06,
|
1370 |
+
"loss": 2.3185,
|
1371 |
+
"step": 1900
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 7.55,
|
1375 |
+
"grad_norm": 2.1061959266662598,
|
1376 |
+
"learning_rate": 7.17909865627813e-06,
|
1377 |
+
"loss": 2.3499,
|
1378 |
+
"step": 1910
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 7.59,
|
1382 |
+
"grad_norm": 1.7624549865722656,
|
1383 |
+
"learning_rate": 6.961048527584296e-06,
|
1384 |
+
"loss": 2.3895,
|
1385 |
+
"step": 1920
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 7.62,
|
1389 |
+
"grad_norm": 2.2806477546691895,
|
1390 |
+
"learning_rate": 6.745824306266685e-06,
|
1391 |
+
"loss": 2.3313,
|
1392 |
+
"step": 1930
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 7.66,
|
1396 |
+
"grad_norm": 1.7848331928253174,
|
1397 |
+
"learning_rate": 6.533459708459827e-06,
|
1398 |
+
"loss": 2.4686,
|
1399 |
+
"step": 1940
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 7.7,
|
1403 |
+
"grad_norm": 1.8504621982574463,
|
1404 |
+
"learning_rate": 6.323988002321471e-06,
|
1405 |
+
"loss": 2.2985,
|
1406 |
+
"step": 1950
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 7.74,
|
1410 |
+
"grad_norm": 2.1124908924102783,
|
1411 |
+
"learning_rate": 6.1174420028209585e-06,
|
1412 |
+
"loss": 2.3432,
|
1413 |
+
"step": 1960
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 7.78,
|
1417 |
+
"grad_norm": 1.7486050128936768,
|
1418 |
+
"learning_rate": 5.9138540665985595e-06,
|
1419 |
+
"loss": 2.3414,
|
1420 |
+
"step": 1970
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 7.82,
|
1424 |
+
"grad_norm": 2.394221782684326,
|
1425 |
+
"learning_rate": 5.713256086896604e-06,
|
1426 |
+
"loss": 2.3297,
|
1427 |
+
"step": 1980
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 7.86,
|
1431 |
+
"grad_norm": 2.157335042953491,
|
1432 |
+
"learning_rate": 5.5156794885632165e-06,
|
1433 |
+
"loss": 2.2748,
|
1434 |
+
"step": 1990
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 7.9,
|
1438 |
+
"grad_norm": 2.8654778003692627,
|
1439 |
+
"learning_rate": 5.3211552231294485e-06,
|
1440 |
+
"loss": 2.3073,
|
1441 |
+
"step": 2000
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 7.9,
|
1445 |
+
"eval_loss": 2.395761489868164,
|
1446 |
+
"eval_runtime": 134.6111,
|
1447 |
+
"eval_samples_per_second": 6.686,
|
1448 |
+
"eval_steps_per_second": 3.343,
|
1449 |
+
"step": 2000
|
1450 |
+
}
|
1451 |
+
],
|
1452 |
+
"logging_steps": 10,
|
1453 |
+
"max_steps": 2530,
|
1454 |
+
"num_input_tokens_seen": 0,
|
1455 |
+
"num_train_epochs": 10,
|
1456 |
+
"save_steps": 400,
|
1457 |
+
"total_flos": 2.2040949247338086e+18,
|
1458 |
+
"train_batch_size": 2,
|
1459 |
+
"trial_name": null,
|
1460 |
+
"trial_params": null
|
1461 |
+
}
|
Baichuan2-7B-Chat-LoRA/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41e6897cd078b2757a5f506bdbed8192b66b0a16848512987e18d31a55ccdea6
|
3 |
+
size 5112
|