ukk0708 commited on
Commit
6cb7d73
1 Parent(s): a4f37eb

Upload 13 files

Browse files

基于Baichuan2-7B-Chat模型训练的角色扮演LoRA

Baichuan2-7B-Chat-LoRA/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ../../model/Baichuan2-7B-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
Baichuan2-7B-Chat-LoRA/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "../../model/Baichuan2-7B-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "W_pack"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
Baichuan2-7B-Chat-LoRA/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9d459649b2b17f9ff93594db158324603d9e135a52ff045d1d84038e8465d8
3
+ size 16785760
Baichuan2-7B-Chat-LoRA/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a6e28f59236f89ce8c2aeef895ba517a79d0b887a0afb30ccf13295dc263e85
3
+ size 33608634
Baichuan2-7B-Chat-LoRA/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71792d9986abf333291d25825245eca92628cefa5f54c3852cce3ae98163a606
3
+ size 14512
Baichuan2-7B-Chat-LoRA/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8746eb25faee6c63bdad38e5ccce008abfe09b6a67f278aadc8f5b3e48f5a137
3
+ size 14512
Baichuan2-7B-Chat-LoRA/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e4d5d49cc91a795c622c3ac3492e103654926a37cf202c51456d8430413e83e
3
+ size 1064
Baichuan2-7B-Chat-LoRA/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
Baichuan2-7B-Chat-LoRA/tokenization_baichuan.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
2
+
3
+ import os
4
+ from shutil import copyfile
5
+ from typing import Any, Dict, List, Optional, Tuple
6
+
7
+ import sentencepiece as spm
8
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
9
+ from transformers.utils import logging
10
+
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
15
+
16
+ PRETRAINED_VOCAB_FILES_MAP = {
17
+ "vocab_file": {},
18
+ "tokenizer_file": {},
19
+ }
20
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
21
+
22
+
23
+ class BaichuanTokenizer(PreTrainedTokenizer):
24
+ """
25
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
26
+
27
+ Args:
28
+ vocab_file (`str`):
29
+ Path to the vocabulary file.
30
+ """
31
+
32
+ vocab_files_names = VOCAB_FILES_NAMES
33
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
34
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
35
+ model_input_names = ["input_ids", "attention_mask"]
36
+
37
+ def __init__(
38
+ self,
39
+ vocab_file,
40
+ unk_token="<unk>",
41
+ bos_token="<s>",
42
+ eos_token="</s>",
43
+ pad_token=None,
44
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
45
+ add_bos_token=True,
46
+ add_eos_token=False,
47
+ clean_up_tokenization_spaces=False,
48
+ **kwargs,
49
+ ):
50
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
51
+ bos_token = (
52
+ AddedToken(bos_token, lstrip=False, rstrip=False)
53
+ if isinstance(bos_token, str)
54
+ else bos_token
55
+ )
56
+ eos_token = (
57
+ AddedToken(eos_token, lstrip=False, rstrip=False)
58
+ if isinstance(eos_token, str)
59
+ else eos_token
60
+ )
61
+ unk_token = (
62
+ AddedToken(unk_token, lstrip=False, rstrip=False)
63
+ if isinstance(unk_token, str)
64
+ else unk_token
65
+ )
66
+ pad_token = (
67
+ AddedToken(pad_token, lstrip=False, rstrip=False)
68
+ if isinstance(pad_token, str)
69
+ else pad_token
70
+ )
71
+
72
+ self.vocab_file = vocab_file
73
+ self.add_bos_token = add_bos_token
74
+ self.add_eos_token = add_eos_token
75
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
76
+ self.sp_model.Load(vocab_file)
77
+ super().__init__(
78
+ bos_token=bos_token,
79
+ eos_token=eos_token,
80
+ unk_token=unk_token,
81
+ pad_token=pad_token,
82
+ add_bos_token=add_bos_token,
83
+ add_eos_token=add_eos_token,
84
+ sp_model_kwargs=self.sp_model_kwargs,
85
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
86
+ **kwargs,
87
+ )
88
+ def __getstate__(self):
89
+ state = self.__dict__.copy()
90
+ state["sp_model"] = None
91
+ return state
92
+
93
+ def __setstate__(self, d):
94
+ self.__dict__ = d
95
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
96
+ self.sp_model.Load(self.vocab_file)
97
+
98
+ @property
99
+ def vocab_size(self):
100
+ """Returns vocab size"""
101
+ return self.sp_model.get_piece_size()
102
+
103
+ def get_vocab(self):
104
+ """Returns vocab as a dict"""
105
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
106
+ vocab.update(self.added_tokens_encoder)
107
+ return vocab
108
+
109
+ def _tokenize(self, text):
110
+ """Returns a tokenized string."""
111
+ return self.sp_model.encode(text, out_type=str)
112
+
113
+ def _convert_token_to_id(self, token):
114
+ """Converts a token (str) in an id using the vocab."""
115
+ return self.sp_model.piece_to_id(token)
116
+
117
+ def _convert_id_to_token(self, index):
118
+ """Converts an index (integer) in a token (str) using the vocab."""
119
+ token = self.sp_model.IdToPiece(index)
120
+ return token
121
+
122
+ def convert_tokens_to_string(self, tokens):
123
+ """Converts a sequence of tokens (string) in a single string."""
124
+ current_sub_tokens = []
125
+ out_string = ""
126
+ prev_is_special = False
127
+ for i, token in enumerate(tokens):
128
+ # make sure that special tokens are not decoded using sentencepiece model
129
+ if token in self.all_special_tokens:
130
+ if not prev_is_special and i != 0:
131
+ out_string += " "
132
+ out_string += self.sp_model.decode(current_sub_tokens) + token
133
+ prev_is_special = True
134
+ current_sub_tokens = []
135
+ else:
136
+ current_sub_tokens.append(token)
137
+ prev_is_special = False
138
+ out_string += self.sp_model.decode(current_sub_tokens)
139
+ return out_string
140
+
141
+ def save_vocabulary(
142
+ self, save_directory, filename_prefix: Optional[str] = None
143
+ ) -> Tuple[str]:
144
+ """
145
+ Save the vocabulary and special tokens file to a directory.
146
+
147
+ Args:
148
+ save_directory (`str`):
149
+ The directory in which to save the vocabulary.
150
+
151
+ Returns:
152
+ `Tuple(str)`: Paths to the files saved.
153
+ """
154
+ if not os.path.isdir(save_directory):
155
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
156
+ return
157
+ out_vocab_file = os.path.join(
158
+ save_directory,
159
+ (filename_prefix + "-" if filename_prefix else "")
160
+ + VOCAB_FILES_NAMES["vocab_file"],
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(
164
+ out_vocab_file
165
+ ) and os.path.isfile(self.vocab_file):
166
+ copyfile(self.vocab_file, out_vocab_file)
167
+ elif not os.path.isfile(self.vocab_file):
168
+ with open(out_vocab_file, "wb") as fi:
169
+ content_spiece_model = self.sp_model.serialized_model_proto()
170
+ fi.write(content_spiece_model)
171
+
172
+ return (out_vocab_file,)
173
+
174
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
175
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
176
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
177
+
178
+ output = bos_token_id + token_ids_0 + eos_token_id
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + bos_token_id + token_ids_1 + eos_token_id
182
+
183
+ return output
184
+
185
+ def get_special_tokens_mask(
186
+ self,
187
+ token_ids_0: List[int],
188
+ token_ids_1: Optional[List[int]] = None,
189
+ already_has_special_tokens: bool = False,
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0,
209
+ token_ids_1=token_ids_1,
210
+ already_has_special_tokens=True,
211
+ )
212
+
213
+ bos_token_id = [1] if self.add_bos_token else []
214
+ eos_token_id = [1] if self.add_eos_token else []
215
+
216
+ if token_ids_1 is None:
217
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
218
+ return (
219
+ bos_token_id
220
+ + ([0] * len(token_ids_0))
221
+ + eos_token_id
222
+ + bos_token_id
223
+ + ([0] * len(token_ids_1))
224
+ + eos_token_id
225
+ )
226
+
227
+ def create_token_type_ids_from_sequences(
228
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
229
+ ) -> List[int]:
230
+ """
231
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
232
+ sequence pair mask has the following format:
233
+
234
+ ```
235
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
236
+ | first sequence | second sequence |
237
+ ```
238
+
239
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
240
+
241
+ Args:
242
+ token_ids_0 (`List[int]`):
243
+ List of ids.
244
+ token_ids_1 (`List[int]`, *optional*):
245
+ Optional second list of IDs for sequence pairs.
246
+
247
+ Returns:
248
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
249
+ """
250
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
251
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
252
+
253
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
254
+
255
+ if token_ids_1 is not None:
256
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
257
+
258
+ return output
Baichuan2-7B-Chat-LoRA/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
3
+ size 2001107
Baichuan2-7B-Chat-LoRA/tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "auto_map": {
31
+ "AutoTokenizer": [
32
+ "tokenization_baichuan.BaichuanTokenizer",
33
+ null
34
+ ]
35
+ },
36
+ "bos_token": "<s>",
37
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<reserved_106>' + content + '<reserved_107>' }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
38
+ "clean_up_tokenization_spaces": false,
39
+ "eos_token": "</s>",
40
+ "model_max_length": 4096,
41
+ "pad_token": "<unk>",
42
+ "padding_side": "right",
43
+ "sp_model_kwargs": {},
44
+ "split_special_tokens": false,
45
+ "tokenizer_class": "BaichuanTokenizer",
46
+ "unk_token": "<unk>",
47
+ "use_fast": false
48
+ }
Baichuan2-7B-Chat-LoRA/trainer_state.json ADDED
@@ -0,0 +1,1461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.395761489868164,
3
+ "best_model_checkpoint": "../../saves/Baichuan2-7B-Chat/lora/sft/checkpoint-2000",
4
+ "epoch": 7.901234567901234,
5
+ "eval_steps": 400,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "grad_norm": 1.1405200958251953,
14
+ "learning_rate": 2.25e-05,
15
+ "loss": 3.6308,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.08,
20
+ "grad_norm": 1.766953945159912,
21
+ "learning_rate": 4.75e-05,
22
+ "loss": 3.4926,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.12,
27
+ "grad_norm": 1.2588557004928589,
28
+ "learning_rate": 4.99984138555282e-05,
29
+ "loss": 3.2621,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.16,
34
+ "grad_norm": 0.9718258380889893,
35
+ "learning_rate": 4.999293114538139e-05,
36
+ "loss": 3.0924,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.2,
41
+ "grad_norm": 0.9004219770431519,
42
+ "learning_rate": 4.998353314622318e-05,
43
+ "loss": 3.0325,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.24,
48
+ "grad_norm": 0.7595831751823425,
49
+ "learning_rate": 4.997022133030516e-05,
50
+ "loss": 2.9351,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.28,
55
+ "grad_norm": 0.8930522799491882,
56
+ "learning_rate": 4.9952997783001254e-05,
57
+ "loss": 2.8068,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.32,
62
+ "grad_norm": 0.7985192537307739,
63
+ "learning_rate": 4.9931865202480996e-05,
64
+ "loss": 2.8503,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.36,
69
+ "grad_norm": 0.9129031896591187,
70
+ "learning_rate": 4.990682689928687e-05,
71
+ "loss": 2.7241,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.4,
76
+ "grad_norm": 0.8816404342651367,
77
+ "learning_rate": 4.9877886795815685e-05,
78
+ "loss": 2.8525,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.43,
83
+ "grad_norm": 0.8212659358978271,
84
+ "learning_rate": 4.98450494257041e-05,
85
+ "loss": 2.7173,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.47,
90
+ "grad_norm": 0.9286770224571228,
91
+ "learning_rate": 4.980831993311844e-05,
92
+ "loss": 2.7857,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.51,
97
+ "grad_norm": 0.95149165391922,
98
+ "learning_rate": 4.976770407194877e-05,
99
+ "loss": 2.6764,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.55,
104
+ "grad_norm": 1.1459342241287231,
105
+ "learning_rate": 4.972320820490759e-05,
106
+ "loss": 2.7001,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.59,
111
+ "grad_norm": 1.1330541372299194,
112
+ "learning_rate": 4.967483930253302e-05,
113
+ "loss": 2.7024,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.63,
118
+ "grad_norm": 0.9277874827384949,
119
+ "learning_rate": 4.962260494209683e-05,
120
+ "loss": 2.7039,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.67,
125
+ "grad_norm": 1.0230640172958374,
126
+ "learning_rate": 4.9566513306417444e-05,
127
+ "loss": 2.7423,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.71,
132
+ "grad_norm": 0.9915482997894287,
133
+ "learning_rate": 4.950657318257805e-05,
134
+ "loss": 2.7303,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.75,
139
+ "grad_norm": 1.105600357055664,
140
+ "learning_rate": 4.944279396055003e-05,
141
+ "loss": 2.6616,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.79,
146
+ "grad_norm": 1.1231801509857178,
147
+ "learning_rate": 4.937518563172196e-05,
148
+ "loss": 2.655,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.83,
153
+ "grad_norm": 0.908206582069397,
154
+ "learning_rate": 4.930375878733445e-05,
155
+ "loss": 2.6541,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.87,
160
+ "grad_norm": 1.087323546409607,
161
+ "learning_rate": 4.922852461682093e-05,
162
+ "loss": 2.5646,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.91,
167
+ "grad_norm": 1.0399665832519531,
168
+ "learning_rate": 4.9149494906054716e-05,
169
+ "loss": 2.6036,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.95,
174
+ "grad_norm": 0.9571551084518433,
175
+ "learning_rate": 4.906668203550279e-05,
176
+ "loss": 2.6212,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.99,
181
+ "grad_norm": 0.9485632181167603,
182
+ "learning_rate": 4.8980098978286215e-05,
183
+ "loss": 2.6717,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 1.03,
188
+ "grad_norm": 0.9359139204025269,
189
+ "learning_rate": 4.888975929814792e-05,
190
+ "loss": 2.5967,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 1.07,
195
+ "grad_norm": 1.2552564144134521,
196
+ "learning_rate": 4.8795677147327776e-05,
197
+ "loss": 2.5608,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 1.11,
202
+ "grad_norm": 0.9426449537277222,
203
+ "learning_rate": 4.8697867264345616e-05,
204
+ "loss": 2.5731,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 1.15,
209
+ "grad_norm": 1.132430076599121,
210
+ "learning_rate": 4.859634497169233e-05,
211
+ "loss": 2.5884,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 1.19,
216
+ "grad_norm": 0.9066994786262512,
217
+ "learning_rate": 4.849112617342955e-05,
218
+ "loss": 2.5888,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 1.22,
223
+ "grad_norm": 1.0188608169555664,
224
+ "learning_rate": 4.8382227352698115e-05,
225
+ "loss": 2.5849,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 1.26,
230
+ "grad_norm": 1.3850712776184082,
231
+ "learning_rate": 4.826966556913597e-05,
232
+ "loss": 2.485,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 1.3,
237
+ "grad_norm": 1.1342747211456299,
238
+ "learning_rate": 4.815345845620563e-05,
239
+ "loss": 2.5624,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 1.34,
244
+ "grad_norm": 1.0687206983566284,
245
+ "learning_rate": 4.803362421843177e-05,
246
+ "loss": 2.5051,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 1.38,
251
+ "grad_norm": 1.5436629056930542,
252
+ "learning_rate": 4.7910181628549454e-05,
253
+ "loss": 2.5185,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 1.42,
258
+ "grad_norm": 1.2030800580978394,
259
+ "learning_rate": 4.77831500245632e-05,
260
+ "loss": 2.5122,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 1.46,
265
+ "grad_norm": 1.2365000247955322,
266
+ "learning_rate": 4.765254930671762e-05,
267
+ "loss": 2.5704,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 1.5,
272
+ "grad_norm": 1.1403887271881104,
273
+ "learning_rate": 4.75183999343799e-05,
274
+ "loss": 2.5605,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 1.54,
279
+ "grad_norm": 1.2193725109100342,
280
+ "learning_rate": 4.738072292283473e-05,
281
+ "loss": 2.569,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 1.58,
286
+ "grad_norm": 1.4231560230255127,
287
+ "learning_rate": 4.723953983999215e-05,
288
+ "loss": 2.4809,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 1.58,
293
+ "eval_loss": 2.4551122188568115,
294
+ "eval_runtime": 134.6274,
295
+ "eval_samples_per_second": 6.685,
296
+ "eval_steps_per_second": 3.343,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.62,
301
+ "grad_norm": 1.26221764087677,
302
+ "learning_rate": 4.70948728030088e-05,
303
+ "loss": 2.6339,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.66,
308
+ "grad_norm": 1.2207887172698975,
309
+ "learning_rate": 4.694674447482312e-05,
310
+ "loss": 2.5877,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.7,
315
+ "grad_norm": 1.2746591567993164,
316
+ "learning_rate": 4.679517806060509e-05,
317
+ "loss": 2.5866,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.74,
322
+ "grad_norm": 1.774005651473999,
323
+ "learning_rate": 4.664019730412101e-05,
324
+ "loss": 2.5073,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.78,
329
+ "grad_norm": 1.4896618127822876,
330
+ "learning_rate": 4.648182648401389e-05,
331
+ "loss": 2.4688,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.82,
336
+ "grad_norm": 1.3457367420196533,
337
+ "learning_rate": 4.6320090410000027e-05,
338
+ "loss": 2.527,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.86,
343
+ "grad_norm": 1.2498492002487183,
344
+ "learning_rate": 4.615501441898248e-05,
345
+ "loss": 2.625,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.9,
350
+ "grad_norm": 1.3643558025360107,
351
+ "learning_rate": 4.598662437108186e-05,
352
+ "loss": 2.4755,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.94,
357
+ "grad_norm": 1.198166847229004,
358
+ "learning_rate": 4.581494664558518e-05,
359
+ "loss": 2.5688,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.98,
364
+ "grad_norm": 3.3917434215545654,
365
+ "learning_rate": 4.564000813681342e-05,
366
+ "loss": 2.5182,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 2.01,
371
+ "grad_norm": 1.562139630317688,
372
+ "learning_rate": 4.546183624990832e-05,
373
+ "loss": 2.4533,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 2.05,
378
+ "grad_norm": 1.1284795999526978,
379
+ "learning_rate": 4.528045889653927e-05,
380
+ "loss": 2.4901,
381
+ "step": 520
382
+ },
383
+ {
384
+ "epoch": 2.09,
385
+ "grad_norm": 1.7664827108383179,
386
+ "learning_rate": 4.509590449053074e-05,
387
+ "loss": 2.5075,
388
+ "step": 530
389
+ },
390
+ {
391
+ "epoch": 2.13,
392
+ "grad_norm": 1.6162073612213135,
393
+ "learning_rate": 4.49082019434111e-05,
394
+ "loss": 2.4769,
395
+ "step": 540
396
+ },
397
+ {
398
+ "epoch": 2.17,
399
+ "grad_norm": 1.3468163013458252,
400
+ "learning_rate": 4.471738065988347e-05,
401
+ "loss": 2.4979,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 2.21,
406
+ "grad_norm": 1.0762629508972168,
407
+ "learning_rate": 4.452347053321926e-05,
408
+ "loss": 2.5436,
409
+ "step": 560
410
+ },
411
+ {
412
+ "epoch": 2.25,
413
+ "grad_norm": 1.1567480564117432,
414
+ "learning_rate": 4.432650194057527e-05,
415
+ "loss": 2.5454,
416
+ "step": 570
417
+ },
418
+ {
419
+ "epoch": 2.29,
420
+ "grad_norm": 1.419041395187378,
421
+ "learning_rate": 4.412650573823489e-05,
422
+ "loss": 2.4681,
423
+ "step": 580
424
+ },
425
+ {
426
+ "epoch": 2.33,
427
+ "grad_norm": 1.2923465967178345,
428
+ "learning_rate": 4.392351325677433e-05,
429
+ "loss": 2.565,
430
+ "step": 590
431
+ },
432
+ {
433
+ "epoch": 2.37,
434
+ "grad_norm": 1.2892262935638428,
435
+ "learning_rate": 4.371755629615442e-05,
436
+ "loss": 2.5258,
437
+ "step": 600
438
+ },
439
+ {
440
+ "epoch": 2.41,
441
+ "grad_norm": 1.467966914176941,
442
+ "learning_rate": 4.3508667120739046e-05,
443
+ "loss": 2.5776,
444
+ "step": 610
445
+ },
446
+ {
447
+ "epoch": 2.45,
448
+ "grad_norm": 1.2278165817260742,
449
+ "learning_rate": 4.329687845424069e-05,
450
+ "loss": 2.4175,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 2.49,
455
+ "grad_norm": 1.3225311040878296,
456
+ "learning_rate": 4.308222347459411e-05,
457
+ "loss": 2.4561,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 2.53,
462
+ "grad_norm": 1.2582958936691284,
463
+ "learning_rate": 4.286473580875878e-05,
464
+ "loss": 2.3885,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 2.57,
469
+ "grad_norm": 1.206189751625061,
470
+ "learning_rate": 4.264444952745108e-05,
471
+ "loss": 2.5041,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 2.61,
476
+ "grad_norm": 1.9777090549468994,
477
+ "learning_rate": 4.242139913980686e-05,
478
+ "loss": 2.4763,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 2.65,
483
+ "grad_norm": 1.91414475440979,
484
+ "learning_rate": 4.219561958797543e-05,
485
+ "loss": 2.37,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 2.69,
490
+ "grad_norm": 1.0806653499603271,
491
+ "learning_rate": 4.196714624164565e-05,
492
+ "loss": 2.5985,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 2.73,
497
+ "grad_norm": 1.2435009479522705,
498
+ "learning_rate": 4.1736014892505064e-05,
499
+ "loss": 2.4765,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 2.77,
504
+ "grad_norm": 1.3920471668243408,
505
+ "learning_rate": 4.150226174863292e-05,
506
+ "loss": 2.4446,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 2.8,
511
+ "grad_norm": 1.949141263961792,
512
+ "learning_rate": 4.126592342882795e-05,
513
+ "loss": 2.4979,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 2.84,
518
+ "grad_norm": 1.1306403875350952,
519
+ "learning_rate": 4.1027036956871854e-05,
520
+ "loss": 2.4096,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 2.88,
525
+ "grad_norm": 0.9906802773475647,
526
+ "learning_rate": 4.078563975572928e-05,
527
+ "loss": 2.5409,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 2.92,
532
+ "grad_norm": 1.4917031526565552,
533
+ "learning_rate": 4.054176964168528e-05,
534
+ "loss": 2.4508,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 2.96,
539
+ "grad_norm": 1.554909110069275,
540
+ "learning_rate": 4.029546481842123e-05,
541
+ "loss": 2.4673,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 3.0,
546
+ "grad_norm": 1.2943602800369263,
547
+ "learning_rate": 4.004676387102995e-05,
548
+ "loss": 2.4801,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 3.04,
553
+ "grad_norm": 1.301687240600586,
554
+ "learning_rate": 3.9795705759971116e-05,
555
+ "loss": 2.4779,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 3.08,
560
+ "grad_norm": 1.2175750732421875,
561
+ "learning_rate": 3.9542329814967914e-05,
562
+ "loss": 2.3964,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 3.12,
567
+ "grad_norm": 2.502758502960205,
568
+ "learning_rate": 3.92866757288458e-05,
569
+ "loss": 2.4044,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 3.16,
574
+ "grad_norm": 1.508583664894104,
575
+ "learning_rate": 3.9028783551314347e-05,
576
+ "loss": 2.5229,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 3.16,
581
+ "eval_loss": 2.413785696029663,
582
+ "eval_runtime": 133.2078,
583
+ "eval_samples_per_second": 6.756,
584
+ "eval_steps_per_second": 3.378,
585
+ "step": 800
586
+ },
587
+ {
588
+ "epoch": 3.2,
589
+ "grad_norm": 1.3288512229919434,
590
+ "learning_rate": 3.876869368269327e-05,
591
+ "loss": 2.4517,
592
+ "step": 810
593
+ },
594
+ {
595
+ "epoch": 3.24,
596
+ "grad_norm": 1.4469561576843262,
597
+ "learning_rate": 3.850644686758346e-05,
598
+ "loss": 2.5377,
599
+ "step": 820
600
+ },
601
+ {
602
+ "epoch": 3.28,
603
+ "grad_norm": 1.560353398323059,
604
+ "learning_rate": 3.82420841884841e-05,
605
+ "loss": 2.3569,
606
+ "step": 830
607
+ },
608
+ {
609
+ "epoch": 3.32,
610
+ "grad_norm": 1.9207900762557983,
611
+ "learning_rate": 3.7975647059356875e-05,
612
+ "loss": 2.4131,
613
+ "step": 840
614
+ },
615
+ {
616
+ "epoch": 3.36,
617
+ "grad_norm": 1.685535192489624,
618
+ "learning_rate": 3.770717721913819e-05,
619
+ "loss": 2.5124,
620
+ "step": 850
621
+ },
622
+ {
623
+ "epoch": 3.4,
624
+ "grad_norm": 1.3592054843902588,
625
+ "learning_rate": 3.743671672520054e-05,
626
+ "loss": 2.3343,
627
+ "step": 860
628
+ },
629
+ {
630
+ "epoch": 3.44,
631
+ "grad_norm": 1.9445059299468994,
632
+ "learning_rate": 3.716430794676402e-05,
633
+ "loss": 2.4614,
634
+ "step": 870
635
+ },
636
+ {
637
+ "epoch": 3.48,
638
+ "grad_norm": 1.6313419342041016,
639
+ "learning_rate": 3.688999355825887e-05,
640
+ "loss": 2.4678,
641
+ "step": 880
642
+ },
643
+ {
644
+ "epoch": 3.52,
645
+ "grad_norm": 2.071474313735962,
646
+ "learning_rate": 3.661381653264031e-05,
647
+ "loss": 2.4016,
648
+ "step": 890
649
+ },
650
+ {
651
+ "epoch": 3.56,
652
+ "grad_norm": 6.210580825805664,
653
+ "learning_rate": 3.633582013465658e-05,
654
+ "loss": 2.3772,
655
+ "step": 900
656
+ },
657
+ {
658
+ "epoch": 3.6,
659
+ "grad_norm": 1.459627628326416,
660
+ "learning_rate": 3.605604791407124e-05,
661
+ "loss": 2.4438,
662
+ "step": 910
663
+ },
664
+ {
665
+ "epoch": 3.63,
666
+ "grad_norm": 1.3812425136566162,
667
+ "learning_rate": 3.577454369884086e-05,
668
+ "loss": 2.4352,
669
+ "step": 920
670
+ },
671
+ {
672
+ "epoch": 3.67,
673
+ "grad_norm": 1.443032145500183,
674
+ "learning_rate": 3.549135158824913e-05,
675
+ "loss": 2.3374,
676
+ "step": 930
677
+ },
678
+ {
679
+ "epoch": 3.71,
680
+ "grad_norm": 2.8968636989593506,
681
+ "learning_rate": 3.520651594599842e-05,
682
+ "loss": 2.3911,
683
+ "step": 940
684
+ },
685
+ {
686
+ "epoch": 3.75,
687
+ "grad_norm": 1.7020437717437744,
688
+ "learning_rate": 3.4920081393259955e-05,
689
+ "loss": 2.5022,
690
+ "step": 950
691
+ },
692
+ {
693
+ "epoch": 3.79,
694
+ "grad_norm": 1.4983431100845337,
695
+ "learning_rate": 3.463209280168365e-05,
696
+ "loss": 2.4919,
697
+ "step": 960
698
+ },
699
+ {
700
+ "epoch": 3.83,
701
+ "grad_norm": 1.527735948562622,
702
+ "learning_rate": 3.434259528636872e-05,
703
+ "loss": 2.423,
704
+ "step": 970
705
+ },
706
+ {
707
+ "epoch": 3.87,
708
+ "grad_norm": 1.3608715534210205,
709
+ "learning_rate": 3.405163419879611e-05,
710
+ "loss": 2.4668,
711
+ "step": 980
712
+ },
713
+ {
714
+ "epoch": 3.91,
715
+ "grad_norm": 1.6936486959457397,
716
+ "learning_rate": 3.37592551197239e-05,
717
+ "loss": 2.4736,
718
+ "step": 990
719
+ },
720
+ {
721
+ "epoch": 3.95,
722
+ "grad_norm": 1.6318974494934082,
723
+ "learning_rate": 3.34655038520469e-05,
724
+ "loss": 2.4683,
725
+ "step": 1000
726
+ },
727
+ {
728
+ "epoch": 3.99,
729
+ "grad_norm": 1.3295326232910156,
730
+ "learning_rate": 3.317042641362126e-05,
731
+ "loss": 2.3889,
732
+ "step": 1010
733
+ },
734
+ {
735
+ "epoch": 4.03,
736
+ "grad_norm": 1.5521697998046875,
737
+ "learning_rate": 3.2874069030055534e-05,
738
+ "loss": 2.4913,
739
+ "step": 1020
740
+ },
741
+ {
742
+ "epoch": 4.07,
743
+ "grad_norm": 1.2893122434616089,
744
+ "learning_rate": 3.257647812746922e-05,
745
+ "loss": 2.4289,
746
+ "step": 1030
747
+ },
748
+ {
749
+ "epoch": 4.11,
750
+ "grad_norm": 1.4011497497558594,
751
+ "learning_rate": 3.227770032521975e-05,
752
+ "loss": 2.4604,
753
+ "step": 1040
754
+ },
755
+ {
756
+ "epoch": 4.15,
757
+ "grad_norm": 1.7100721597671509,
758
+ "learning_rate": 3.1977782428599364e-05,
759
+ "loss": 2.3778,
760
+ "step": 1050
761
+ },
762
+ {
763
+ "epoch": 4.19,
764
+ "grad_norm": 1.4909169673919678,
765
+ "learning_rate": 3.1676771421502746e-05,
766
+ "loss": 2.4634,
767
+ "step": 1060
768
+ },
769
+ {
770
+ "epoch": 4.23,
771
+ "grad_norm": 2.009910821914673,
772
+ "learning_rate": 3.137471445906675e-05,
773
+ "loss": 2.4035,
774
+ "step": 1070
775
+ },
776
+ {
777
+ "epoch": 4.27,
778
+ "grad_norm": 1.4564893245697021,
779
+ "learning_rate": 3.107165886028326e-05,
780
+ "loss": 2.4581,
781
+ "step": 1080
782
+ },
783
+ {
784
+ "epoch": 4.31,
785
+ "grad_norm": 1.6162135601043701,
786
+ "learning_rate": 3.076765210058638e-05,
787
+ "loss": 2.4216,
788
+ "step": 1090
789
+ },
790
+ {
791
+ "epoch": 4.35,
792
+ "grad_norm": 1.469684362411499,
793
+ "learning_rate": 3.046274180441512e-05,
794
+ "loss": 2.3395,
795
+ "step": 1100
796
+ },
797
+ {
798
+ "epoch": 4.39,
799
+ "grad_norm": 2.3828556537628174,
800
+ "learning_rate": 3.015697573775283e-05,
801
+ "loss": 2.4602,
802
+ "step": 1110
803
+ },
804
+ {
805
+ "epoch": 4.42,
806
+ "grad_norm": 1.5302035808563232,
807
+ "learning_rate": 2.9850401800644257e-05,
808
+ "loss": 2.4116,
809
+ "step": 1120
810
+ },
811
+ {
812
+ "epoch": 4.46,
813
+ "grad_norm": 2.1008236408233643,
814
+ "learning_rate": 2.9543068019691833e-05,
815
+ "loss": 2.2545,
816
+ "step": 1130
817
+ },
818
+ {
819
+ "epoch": 4.5,
820
+ "grad_norm": 1.4228670597076416,
821
+ "learning_rate": 2.923502254053193e-05,
822
+ "loss": 2.4589,
823
+ "step": 1140
824
+ },
825
+ {
826
+ "epoch": 4.54,
827
+ "grad_norm": 1.4719305038452148,
828
+ "learning_rate": 2.892631362029265e-05,
829
+ "loss": 2.3918,
830
+ "step": 1150
831
+ },
832
+ {
833
+ "epoch": 4.58,
834
+ "grad_norm": 1.771802544593811,
835
+ "learning_rate": 2.8616989620034013e-05,
836
+ "loss": 2.3929,
837
+ "step": 1160
838
+ },
839
+ {
840
+ "epoch": 4.62,
841
+ "grad_norm": 1.5566627979278564,
842
+ "learning_rate": 2.83070989971719e-05,
843
+ "loss": 2.3442,
844
+ "step": 1170
845
+ },
846
+ {
847
+ "epoch": 4.66,
848
+ "grad_norm": 1.8499693870544434,
849
+ "learning_rate": 2.7996690297886995e-05,
850
+ "loss": 2.4422,
851
+ "step": 1180
852
+ },
853
+ {
854
+ "epoch": 4.7,
855
+ "grad_norm": 1.5866152048110962,
856
+ "learning_rate": 2.768581214951964e-05,
857
+ "loss": 2.4489,
858
+ "step": 1190
859
+ },
860
+ {
861
+ "epoch": 4.74,
862
+ "grad_norm": 1.5571675300598145,
863
+ "learning_rate": 2.737451325295214e-05,
864
+ "loss": 2.3453,
865
+ "step": 1200
866
+ },
867
+ {
868
+ "epoch": 4.74,
869
+ "eval_loss": 2.4050841331481934,
870
+ "eval_runtime": 133.8041,
871
+ "eval_samples_per_second": 6.726,
872
+ "eval_steps_per_second": 3.363,
873
+ "step": 1200
874
+ },
875
+ {
876
+ "epoch": 4.78,
877
+ "grad_norm": 1.371382474899292,
878
+ "learning_rate": 2.706284237497948e-05,
879
+ "loss": 2.3094,
880
+ "step": 1210
881
+ },
882
+ {
883
+ "epoch": 4.82,
884
+ "grad_norm": 1.5894430875778198,
885
+ "learning_rate": 2.675084834066968e-05,
886
+ "loss": 2.352,
887
+ "step": 1220
888
+ },
889
+ {
890
+ "epoch": 4.86,
891
+ "grad_norm": 1.9093360900878906,
892
+ "learning_rate": 2.6438580025715138e-05,
893
+ "loss": 2.3941,
894
+ "step": 1230
895
+ },
896
+ {
897
+ "epoch": 4.9,
898
+ "grad_norm": 1.7057812213897705,
899
+ "learning_rate": 2.612608634877588e-05,
900
+ "loss": 2.408,
901
+ "step": 1240
902
+ },
903
+ {
904
+ "epoch": 4.94,
905
+ "grad_norm": 4.448972225189209,
906
+ "learning_rate": 2.5813416263816227e-05,
907
+ "loss": 2.4234,
908
+ "step": 1250
909
+ },
910
+ {
911
+ "epoch": 4.98,
912
+ "grad_norm": 1.4726636409759521,
913
+ "learning_rate": 2.550061875243584e-05,
914
+ "loss": 2.4223,
915
+ "step": 1260
916
+ },
917
+ {
918
+ "epoch": 5.02,
919
+ "grad_norm": 1.3479527235031128,
920
+ "learning_rate": 2.5187742816196487e-05,
921
+ "loss": 2.3444,
922
+ "step": 1270
923
+ },
924
+ {
925
+ "epoch": 5.06,
926
+ "grad_norm": 1.584678292274475,
927
+ "learning_rate": 2.487483746894563e-05,
928
+ "loss": 2.4881,
929
+ "step": 1280
930
+ },
931
+ {
932
+ "epoch": 5.1,
933
+ "grad_norm": 1.5328477621078491,
934
+ "learning_rate": 2.4561951729138167e-05,
935
+ "loss": 2.3752,
936
+ "step": 1290
937
+ },
938
+ {
939
+ "epoch": 5.14,
940
+ "grad_norm": 2.0441181659698486,
941
+ "learning_rate": 2.4249134612157346e-05,
942
+ "loss": 2.4605,
943
+ "step": 1300
944
+ },
945
+ {
946
+ "epoch": 5.18,
947
+ "grad_norm": 1.5883582830429077,
948
+ "learning_rate": 2.393643512263627e-05,
949
+ "loss": 2.3095,
950
+ "step": 1310
951
+ },
952
+ {
953
+ "epoch": 5.21,
954
+ "grad_norm": 1.6504632234573364,
955
+ "learning_rate": 2.3623902246780994e-05,
956
+ "loss": 2.3773,
957
+ "step": 1320
958
+ },
959
+ {
960
+ "epoch": 5.25,
961
+ "grad_norm": 2.101841926574707,
962
+ "learning_rate": 2.331158494469657e-05,
963
+ "loss": 2.3966,
964
+ "step": 1330
965
+ },
966
+ {
967
+ "epoch": 5.29,
968
+ "grad_norm": 1.5765920877456665,
969
+ "learning_rate": 2.2999532142717174e-05,
970
+ "loss": 2.4361,
971
+ "step": 1340
972
+ },
973
+ {
974
+ "epoch": 5.33,
975
+ "grad_norm": 2.0858278274536133,
976
+ "learning_rate": 2.268779272574146e-05,
977
+ "loss": 2.3576,
978
+ "step": 1350
979
+ },
980
+ {
981
+ "epoch": 5.37,
982
+ "grad_norm": 1.7046364545822144,
983
+ "learning_rate": 2.2376415529574525e-05,
984
+ "loss": 2.4298,
985
+ "step": 1360
986
+ },
987
+ {
988
+ "epoch": 5.41,
989
+ "grad_norm": 1.7461296319961548,
990
+ "learning_rate": 2.206544933327742e-05,
991
+ "loss": 2.3175,
992
+ "step": 1370
993
+ },
994
+ {
995
+ "epoch": 5.45,
996
+ "grad_norm": 2.0052788257598877,
997
+ "learning_rate": 2.1754942851525677e-05,
998
+ "loss": 2.3432,
999
+ "step": 1380
1000
+ },
1001
+ {
1002
+ "epoch": 5.49,
1003
+ "grad_norm": 1.8527193069458008,
1004
+ "learning_rate": 2.1444944726977857e-05,
1005
+ "loss": 2.2937,
1006
+ "step": 1390
1007
+ },
1008
+ {
1009
+ "epoch": 5.53,
1010
+ "grad_norm": 1.8431612253189087,
1011
+ "learning_rate": 2.1135503522655374e-05,
1012
+ "loss": 2.3031,
1013
+ "step": 1400
1014
+ },
1015
+ {
1016
+ "epoch": 5.57,
1017
+ "grad_norm": 1.8249716758728027,
1018
+ "learning_rate": 2.082666771433484e-05,
1019
+ "loss": 2.4171,
1020
+ "step": 1410
1021
+ },
1022
+ {
1023
+ "epoch": 5.61,
1024
+ "grad_norm": 1.6596335172653198,
1025
+ "learning_rate": 2.0518485682954025e-05,
1026
+ "loss": 2.4917,
1027
+ "step": 1420
1028
+ },
1029
+ {
1030
+ "epoch": 5.65,
1031
+ "grad_norm": 1.8855317831039429,
1032
+ "learning_rate": 2.0211005707032733e-05,
1033
+ "loss": 2.3648,
1034
+ "step": 1430
1035
+ },
1036
+ {
1037
+ "epoch": 5.69,
1038
+ "grad_norm": 1.6180534362792969,
1039
+ "learning_rate": 1.9904275955109652e-05,
1040
+ "loss": 2.4083,
1041
+ "step": 1440
1042
+ },
1043
+ {
1044
+ "epoch": 5.73,
1045
+ "grad_norm": 1.5273176431655884,
1046
+ "learning_rate": 1.959834447819649e-05,
1047
+ "loss": 2.4187,
1048
+ "step": 1450
1049
+ },
1050
+ {
1051
+ "epoch": 5.77,
1052
+ "grad_norm": 1.8004169464111328,
1053
+ "learning_rate": 1.9293259202250517e-05,
1054
+ "loss": 2.4147,
1055
+ "step": 1460
1056
+ },
1057
+ {
1058
+ "epoch": 5.81,
1059
+ "grad_norm": 1.641048550605774,
1060
+ "learning_rate": 1.8989067920666633e-05,
1061
+ "loss": 2.3738,
1062
+ "step": 1470
1063
+ },
1064
+ {
1065
+ "epoch": 5.85,
1066
+ "grad_norm": 1.586946964263916,
1067
+ "learning_rate": 1.8685818286790325e-05,
1068
+ "loss": 2.4126,
1069
+ "step": 1480
1070
+ },
1071
+ {
1072
+ "epoch": 5.89,
1073
+ "grad_norm": 2.0825576782226562,
1074
+ "learning_rate": 1.8383557806452433e-05,
1075
+ "loss": 2.3781,
1076
+ "step": 1490
1077
+ },
1078
+ {
1079
+ "epoch": 5.93,
1080
+ "grad_norm": 1.7725000381469727,
1081
+ "learning_rate": 1.808233383052709e-05,
1082
+ "loss": 2.2956,
1083
+ "step": 1500
1084
+ },
1085
+ {
1086
+ "epoch": 5.97,
1087
+ "grad_norm": 1.7009029388427734,
1088
+ "learning_rate": 1.7782193547513974e-05,
1089
+ "loss": 2.3416,
1090
+ "step": 1510
1091
+ },
1092
+ {
1093
+ "epoch": 6.0,
1094
+ "grad_norm": 1.7379595041275024,
1095
+ "learning_rate": 1.7483183976145894e-05,
1096
+ "loss": 2.3466,
1097
+ "step": 1520
1098
+ },
1099
+ {
1100
+ "epoch": 6.04,
1101
+ "grad_norm": 1.678911805152893,
1102
+ "learning_rate": 1.7185351958023082e-05,
1103
+ "loss": 2.4167,
1104
+ "step": 1530
1105
+ },
1106
+ {
1107
+ "epoch": 6.08,
1108
+ "grad_norm": 1.663160800933838,
1109
+ "learning_rate": 1.6888744150275148e-05,
1110
+ "loss": 2.4156,
1111
+ "step": 1540
1112
+ },
1113
+ {
1114
+ "epoch": 6.12,
1115
+ "grad_norm": 1.5950766801834106,
1116
+ "learning_rate": 1.6593407018251973e-05,
1117
+ "loss": 2.3795,
1118
+ "step": 1550
1119
+ },
1120
+ {
1121
+ "epoch": 6.16,
1122
+ "grad_norm": 1.5608184337615967,
1123
+ "learning_rate": 1.6299386828244645e-05,
1124
+ "loss": 2.3945,
1125
+ "step": 1560
1126
+ },
1127
+ {
1128
+ "epoch": 6.2,
1129
+ "grad_norm": 2.6302921772003174,
1130
+ "learning_rate": 1.60067296402376e-05,
1131
+ "loss": 2.3195,
1132
+ "step": 1570
1133
+ },
1134
+ {
1135
+ "epoch": 6.24,
1136
+ "grad_norm": 1.7563198804855347,
1137
+ "learning_rate": 1.5715481300692993e-05,
1138
+ "loss": 2.3551,
1139
+ "step": 1580
1140
+ },
1141
+ {
1142
+ "epoch": 6.28,
1143
+ "grad_norm": 2.2081732749938965,
1144
+ "learning_rate": 1.5425687435368648e-05,
1145
+ "loss": 2.3597,
1146
+ "step": 1590
1147
+ },
1148
+ {
1149
+ "epoch": 6.32,
1150
+ "grad_norm": 2.120513916015625,
1151
+ "learning_rate": 1.5137393442170461e-05,
1152
+ "loss": 2.3758,
1153
+ "step": 1600
1154
+ },
1155
+ {
1156
+ "epoch": 6.32,
1157
+ "eval_loss": 2.400667428970337,
1158
+ "eval_runtime": 133.4489,
1159
+ "eval_samples_per_second": 6.744,
1160
+ "eval_steps_per_second": 3.372,
1161
+ "step": 1600
1162
+ },
1163
+ {
1164
+ "epoch": 6.36,
1165
+ "grad_norm": 1.9258661270141602,
1166
+ "learning_rate": 1.4850644484040584e-05,
1167
+ "loss": 2.3852,
1168
+ "step": 1610
1169
+ },
1170
+ {
1171
+ "epoch": 6.4,
1172
+ "grad_norm": 1.749426007270813,
1173
+ "learning_rate": 1.4565485481882396e-05,
1174
+ "loss": 2.3067,
1175
+ "step": 1620
1176
+ },
1177
+ {
1178
+ "epoch": 6.44,
1179
+ "grad_norm": 1.9953992366790771,
1180
+ "learning_rate": 1.4281961107523336e-05,
1181
+ "loss": 2.3013,
1182
+ "step": 1630
1183
+ },
1184
+ {
1185
+ "epoch": 6.48,
1186
+ "grad_norm": 2.156952381134033,
1187
+ "learning_rate": 1.4000115776716849e-05,
1188
+ "loss": 2.3504,
1189
+ "step": 1640
1190
+ },
1191
+ {
1192
+ "epoch": 6.52,
1193
+ "grad_norm": 2.4170098304748535,
1194
+ "learning_rate": 1.371999364218437e-05,
1195
+ "loss": 2.3035,
1196
+ "step": 1650
1197
+ },
1198
+ {
1199
+ "epoch": 6.56,
1200
+ "grad_norm": 2.338102340698242,
1201
+ "learning_rate": 1.3441638586698527e-05,
1202
+ "loss": 2.2753,
1203
+ "step": 1660
1204
+ },
1205
+ {
1206
+ "epoch": 6.6,
1207
+ "grad_norm": 2.286085605621338,
1208
+ "learning_rate": 1.3165094216208696e-05,
1209
+ "loss": 2.3644,
1210
+ "step": 1670
1211
+ },
1212
+ {
1213
+ "epoch": 6.64,
1214
+ "grad_norm": 2.505244016647339,
1215
+ "learning_rate": 1.2890403853009847e-05,
1216
+ "loss": 2.371,
1217
+ "step": 1680
1218
+ },
1219
+ {
1220
+ "epoch": 6.68,
1221
+ "grad_norm": 1.636423110961914,
1222
+ "learning_rate": 1.2617610528955814e-05,
1223
+ "loss": 2.3602,
1224
+ "step": 1690
1225
+ },
1226
+ {
1227
+ "epoch": 6.72,
1228
+ "grad_norm": 1.6253471374511719,
1229
+ "learning_rate": 1.234675697871818e-05,
1230
+ "loss": 2.3858,
1231
+ "step": 1700
1232
+ },
1233
+ {
1234
+ "epoch": 6.76,
1235
+ "grad_norm": 1.9490761756896973,
1236
+ "learning_rate": 1.2077885633091595e-05,
1237
+ "loss": 2.2864,
1238
+ "step": 1710
1239
+ },
1240
+ {
1241
+ "epoch": 6.8,
1242
+ "grad_norm": 1.7611408233642578,
1243
+ "learning_rate": 1.1811038612346728e-05,
1244
+ "loss": 2.2646,
1245
+ "step": 1720
1246
+ },
1247
+ {
1248
+ "epoch": 6.83,
1249
+ "grad_norm": 1.9415556192398071,
1250
+ "learning_rate": 1.154625771963192e-05,
1251
+ "loss": 2.311,
1252
+ "step": 1730
1253
+ },
1254
+ {
1255
+ "epoch": 6.87,
1256
+ "grad_norm": 2.0429086685180664,
1257
+ "learning_rate": 1.1283584434424455e-05,
1258
+ "loss": 2.3504,
1259
+ "step": 1740
1260
+ },
1261
+ {
1262
+ "epoch": 6.91,
1263
+ "grad_norm": 2.0815227031707764,
1264
+ "learning_rate": 1.102305990603257e-05,
1265
+ "loss": 2.3426,
1266
+ "step": 1750
1267
+ },
1268
+ {
1269
+ "epoch": 6.95,
1270
+ "grad_norm": 1.8559825420379639,
1271
+ "learning_rate": 1.0764724947149132e-05,
1272
+ "loss": 2.3183,
1273
+ "step": 1760
1274
+ },
1275
+ {
1276
+ "epoch": 6.99,
1277
+ "grad_norm": 2.6576716899871826,
1278
+ "learning_rate": 1.0508620027458158e-05,
1279
+ "loss": 2.378,
1280
+ "step": 1770
1281
+ },
1282
+ {
1283
+ "epoch": 7.03,
1284
+ "grad_norm": 1.9085129499435425,
1285
+ "learning_rate": 1.0254785267294958e-05,
1286
+ "loss": 2.3286,
1287
+ "step": 1780
1288
+ },
1289
+ {
1290
+ "epoch": 7.07,
1291
+ "grad_norm": 1.899032711982727,
1292
+ "learning_rate": 1.0003260431361039e-05,
1293
+ "loss": 2.3615,
1294
+ "step": 1790
1295
+ },
1296
+ {
1297
+ "epoch": 7.11,
1298
+ "grad_norm": 1.8750344514846802,
1299
+ "learning_rate": 9.75408492249478e-06,
1300
+ "loss": 2.3459,
1301
+ "step": 1800
1302
+ },
1303
+ {
1304
+ "epoch": 7.15,
1305
+ "grad_norm": 2.1118319034576416,
1306
+ "learning_rate": 9.507297775498707e-06,
1307
+ "loss": 2.4204,
1308
+ "step": 1810
1309
+ },
1310
+ {
1311
+ "epoch": 7.19,
1312
+ "grad_norm": 1.971839189529419,
1313
+ "learning_rate": 9.262937651024462e-06,
1314
+ "loss": 2.3497,
1315
+ "step": 1820
1316
+ },
1317
+ {
1318
+ "epoch": 7.23,
1319
+ "grad_norm": 2.0775558948516846,
1320
+ "learning_rate": 9.02104282951641e-06,
1321
+ "loss": 2.3027,
1322
+ "step": 1830
1323
+ },
1324
+ {
1325
+ "epoch": 7.27,
1326
+ "grad_norm": 2.3251700401306152,
1327
+ "learning_rate": 8.781651205214775e-06,
1328
+ "loss": 2.3317,
1329
+ "step": 1840
1330
+ },
1331
+ {
1332
+ "epoch": 7.31,
1333
+ "grad_norm": 2.0580742359161377,
1334
+ "learning_rate": 8.544800280219282e-06,
1335
+ "loss": 2.3516,
1336
+ "step": 1850
1337
+ },
1338
+ {
1339
+ "epoch": 7.35,
1340
+ "grad_norm": 2.2532641887664795,
1341
+ "learning_rate": 8.310527158614204e-06,
1342
+ "loss": 2.2712,
1343
+ "step": 1860
1344
+ },
1345
+ {
1346
+ "epoch": 7.39,
1347
+ "grad_norm": 2.1395344734191895,
1348
+ "learning_rate": 8.07886854065585e-06,
1349
+ "loss": 2.3357,
1350
+ "step": 1870
1351
+ },
1352
+ {
1353
+ "epoch": 7.43,
1354
+ "grad_norm": 1.6818287372589111,
1355
+ "learning_rate": 7.849860717023217e-06,
1356
+ "loss": 2.3414,
1357
+ "step": 1880
1358
+ },
1359
+ {
1360
+ "epoch": 7.47,
1361
+ "grad_norm": 2.29758882522583,
1362
+ "learning_rate": 7.62353956313284e-06,
1363
+ "loss": 2.2435,
1364
+ "step": 1890
1365
+ },
1366
+ {
1367
+ "epoch": 7.51,
1368
+ "grad_norm": 2.3084988594055176,
1369
+ "learning_rate": 7.3999405335187124e-06,
1370
+ "loss": 2.3185,
1371
+ "step": 1900
1372
+ },
1373
+ {
1374
+ "epoch": 7.55,
1375
+ "grad_norm": 2.1061959266662598,
1376
+ "learning_rate": 7.17909865627813e-06,
1377
+ "loss": 2.3499,
1378
+ "step": 1910
1379
+ },
1380
+ {
1381
+ "epoch": 7.59,
1382
+ "grad_norm": 1.7624549865722656,
1383
+ "learning_rate": 6.961048527584296e-06,
1384
+ "loss": 2.3895,
1385
+ "step": 1920
1386
+ },
1387
+ {
1388
+ "epoch": 7.62,
1389
+ "grad_norm": 2.2806477546691895,
1390
+ "learning_rate": 6.745824306266685e-06,
1391
+ "loss": 2.3313,
1392
+ "step": 1930
1393
+ },
1394
+ {
1395
+ "epoch": 7.66,
1396
+ "grad_norm": 1.7848331928253174,
1397
+ "learning_rate": 6.533459708459827e-06,
1398
+ "loss": 2.4686,
1399
+ "step": 1940
1400
+ },
1401
+ {
1402
+ "epoch": 7.7,
1403
+ "grad_norm": 1.8504621982574463,
1404
+ "learning_rate": 6.323988002321471e-06,
1405
+ "loss": 2.2985,
1406
+ "step": 1950
1407
+ },
1408
+ {
1409
+ "epoch": 7.74,
1410
+ "grad_norm": 2.1124908924102783,
1411
+ "learning_rate": 6.1174420028209585e-06,
1412
+ "loss": 2.3432,
1413
+ "step": 1960
1414
+ },
1415
+ {
1416
+ "epoch": 7.78,
1417
+ "grad_norm": 1.7486050128936768,
1418
+ "learning_rate": 5.9138540665985595e-06,
1419
+ "loss": 2.3414,
1420
+ "step": 1970
1421
+ },
1422
+ {
1423
+ "epoch": 7.82,
1424
+ "grad_norm": 2.394221782684326,
1425
+ "learning_rate": 5.713256086896604e-06,
1426
+ "loss": 2.3297,
1427
+ "step": 1980
1428
+ },
1429
+ {
1430
+ "epoch": 7.86,
1431
+ "grad_norm": 2.157335042953491,
1432
+ "learning_rate": 5.5156794885632165e-06,
1433
+ "loss": 2.2748,
1434
+ "step": 1990
1435
+ },
1436
+ {
1437
+ "epoch": 7.9,
1438
+ "grad_norm": 2.8654778003692627,
1439
+ "learning_rate": 5.3211552231294485e-06,
1440
+ "loss": 2.3073,
1441
+ "step": 2000
1442
+ },
1443
+ {
1444
+ "epoch": 7.9,
1445
+ "eval_loss": 2.395761489868164,
1446
+ "eval_runtime": 134.6111,
1447
+ "eval_samples_per_second": 6.686,
1448
+ "eval_steps_per_second": 3.343,
1449
+ "step": 2000
1450
+ }
1451
+ ],
1452
+ "logging_steps": 10,
1453
+ "max_steps": 2530,
1454
+ "num_input_tokens_seen": 0,
1455
+ "num_train_epochs": 10,
1456
+ "save_steps": 400,
1457
+ "total_flos": 2.2040949247338086e+18,
1458
+ "train_batch_size": 2,
1459
+ "trial_name": null,
1460
+ "trial_params": null
1461
+ }
Baichuan2-7B-Chat-LoRA/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e6897cd078b2757a5f506bdbed8192b66b0a16848512987e18d31a55ccdea6
3
+ size 5112