File size: 17,550 Bytes
7b302b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
---
base_model: Yellow-AI-NLP/komodo-7b-base
inference: false
license: apache-2.0
model_type: llama
pipeline_tag: text-generation
prompt_template: '<s>[INST] {prompt} [/INST]
'
quantized_by: ukung
tags:
- finetuned
---
<!-- markdownlint-disable MD041 -->
<!-- description start -->
## Description
These files were quantised using hardware kindly provided by [Massed Compute](https://kaggle.com/).
<!-- description end -->
<!-- README_GGUF.md-about-gguf start -->
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/ukung/komodo-7b-base-GGUF)
* [Model original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ukung/komodo-7b-base-GGUF)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Mistral
```
<s>[INST] {prompt} [/INST]
```
<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* q2_k: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.
* q3_k_l: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* q3_k_m: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
* q3_k_s: Uses Q3_K for all tensors
* q4_0: Original quant method, 4-bit.
* q4_1: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
* q4_k_m: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K
* q4_k_s: Uses Q4_K for all tensors
* q5_0: Higher accuracy, higher resource usage and slower inference.
* q5_1: Even higher accuracy, resource usage and slower inference.
* q5_k_m: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K
* q5_k_s: Uses Q5_K for all tensors
* q6_k: Uses Q8_K for all tensors
* q8_0: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [komodo-7b-base-q2_k.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q2_k.gguf) | Q2_K | 2 | 2.55 GB | Tidak diketahui | smallest, significant quality loss - not recommended for most purposes |
| [komodo-7b-base-q3_k_l.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q3_k_l.gguf) | Q3_K_L | 3 | 3.61 GB | Tidak diketahui | very small, high quality loss |
| [komodo-7b-base-q3_k_m.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q3_k_m.gguf) | Q3_K_M | 3 | 3.31 GB | Tidak diketahui | very small, high quality loss |
| [komodo-7b-base-q3_k_s.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q3_k_s.gguf) | Q3_K_S | 3 | 2.96 GB | Tidak diketahui | very small, high quality loss |
| [komodo-7b-base-q4_0.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_0.gguf) | Q4_0 | 4 | 3.84 GB | Tidak diketahui | smaller, moderate quality loss |
| [komodo-7b-base-q4_1.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_1.gguf) | Q4_1 | 4 | 4.26 GB | Tidak diketahui | smaller, moderate quality loss |
| [komodo-7b-base-q4_k_m.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_k_m.gguf) | Q4_K_M | 4 | 4.1 GB | Tidak diketahui | smaller, moderate quality loss |
| [komodo-7b-base-q4_k_s.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q4_k_s.gguf) | Q4_K_S | 4 | 3.87 GB | Tidak diketahui | smaller, moderate quality loss |
| [komodo-7b-base-q5_0.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_0.gguf) | Q5_0 | 5 | 4.67 GB | Tidak diketahui | medium, balanced quality |
| [komodo-7b-base-q5_1.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_1.gguf) | Q5_1 | 5 | 5.08 GB | Tidak diketahui | medium, balanced quality |
| [komodo-7b-base-q5_k_m.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_k_m.gguf) | Q5_K_M | 5 | 4.8 GB | Tidak diketahui | medium, balanced quality |
| [komodo-7b-base-q5_k_s.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q5_k_s.gguf) | Q5_K_S | 5 | 4.67 GB | Tidak diketahui | medium, balanced quality |
| [komodo-7b-base-q6_k.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q6_k.gguf) | Q6_K | 6 | 5.55 GB | Tidak diketahui | larger, higher quality |
| [komodo-7b-base-q8_0.gguf](https://huggingface.co/ukung/komodo-7b-base-GGUF/tree/main/komodo-7b-base-q8_0.gguf) | Q8_0 | 8 | 7.19 GB | Tidak diketahui | largest, best quality |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-download start -->
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: TheBloke/Mistral-7B-Instruct-v0.2-GGUF and below it, a specific filename to download, such as: komodo-7b-base-q4_0.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF komodo-7b-base-q4_0.gguf --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download Yellow-AI-NLP/komodo-7b-base --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Yellow-AI-NLP/komodo-7b-base komodo-7b-base-q4_0.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_GGUF.md-how-to-download end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 35 -m komodo-7b-base-q4_0.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path="./komodo-7b-base-q4_0.gguf", # Download the model file first
n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
)
# Simple inference example
output = llm(
"<s>[INST] {prompt} [/INST]", # Prompt
max_tokens=512, # Generate up to 512 tokens
stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
echo=True # Whether to echo the prompt
)
# Chat Completion API
llm = Llama(model_path="./komodo-7b-base-q4_0.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a story writing assistant."},
{
"role": "user",
"content": "Write a story about llamas."
}
]
)
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
<!-- README_GGUF.md-how-to-run end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute
Thanks to the [chirper.ai](https://chirper.ai) team!
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
<!-- footer end -->
<!-- original-model-card start -->
## Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
E.g.
```
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"
```
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
```python
pip install ctransformers
from ctransformers import AutoModelForCausalLM
llm1 = AutoModelForCausalLM.from_pretrained("ukung/komodo-7b-base-GGUF", model_file="komodo-7b-base-q4_0.gguf", model_type="llama", gpu_layers=50)
prompt="""jelaskan dengan detail apa itu self-attention?"""
for text in llm1(prompt, stream=True, max_new_tokens=2048, stop=["</s>", "<s>", "<|im_start|>", "<|im_end|>", "|im_end|>", "|im_end|", "<"]):
print(text, end='')
```
## Model Architecture
This instruction model is based on Llama2, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
## Troubleshooting
- If you see the following error:
```
Traceback (most recent call last):
File "", line 1, in
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
raise KeyError(key)
KeyError: 'llama'
```
Installing transformers from source should solve the issue
pip install git+https://github.com/huggingface/transformers
This should not be required after transformers-v4.33.4.
## Limitations
The model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
## The AI Team
UkungZulfah@gmail.com
<!-- original-model-card end --> |