fcakyon commited on
Commit
0ef5f69
1 Parent(s): bc347d7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - ultralyticsplus
5
+ - ultralytics
6
+ - yolov8
7
+ - yolo
8
+ - vision
9
+ - object-detection
10
+ - pytorch
11
+ library_name: ultralytics
12
+ library_version: 8.0.4
13
+ inference: false
14
+
15
+ model-index:
16
+ - name: ultralyticsplus/yolov8s
17
+ results:
18
+ - task:
19
+ type: object-detection
20
+
21
+ metrics:
22
+ - type: precision # since mAP is not available on hf.co/metrics
23
+ value: 0.449 # min: 0.0 - max: 1.0
24
+ name: mAP
25
+ ---
26
+
27
+ ### Supported Labels
28
+
29
+ ```
30
+ ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
31
+ ```
32
+
33
+ ### How to use
34
+
35
+ - Install `ultralytics` and `ultralyticsplus`:
36
+
37
+ ```bash
38
+ pip install -U ultralytics ultralyticsplus
39
+ ```
40
+
41
+ - Load model and perform prediction:
42
+
43
+ ```python
44
+ from ultralyticsplus import YOLO, render_predictions
45
+
46
+ # load model
47
+ model = YOLO('ultralyticsplus/yolov8s')
48
+
49
+ # set model parameters
50
+ model.overrides['conf'] = 0.25 # NMS confidence threshold
51
+ model.overrides['iou'] = 0.45 # NMS IoU threshold
52
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
53
+ model.overrides['max_det'] = 1000 # maximum number of detections per image
54
+
55
+ # set image
56
+ img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
57
+
58
+ # perform inference
59
+ for result in model.predict(img, imgsz=640, return_outputs=True):
60
+ print(result) # [x1, y1, x2, y2, conf, class]
61
+ render = render_predictions(model, img=img, det=result["det"])
62
+ render.show()
63
+ ```
64
+