File size: 1,957 Bytes
1fef26b c558536 1fef26b c558536 1fef26b c558536 1fef26b c558536 1fef26b c558536 1fef26b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- precision
- recall
base_model: distilbert-base-cased
model-index:
- name: bert-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- type: precision
value: 0.7081377380103309
name: Precision
- type: recall
value: 0.709386945441909
name: Recall
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-emotion
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2350
- Precision: 0.7081
- Recall: 0.7094
- Fscore: 0.7082
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.8442 | 1.0 | 815 | 0.8653 | 0.7642 | 0.6192 | 0.6363 |
| 0.5488 | 2.0 | 1630 | 0.9330 | 0.7116 | 0.6838 | 0.6912 |
| 0.2713 | 3.0 | 2445 | 1.2350 | 0.7081 | 0.7094 | 0.7082 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|