--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall base_model: distilbert-base-cased model-index: - name: bert-emotion results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - type: precision value: 0.7081377380103309 name: Precision - type: recall value: 0.709386945441909 name: Recall --- # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2350 - Precision: 0.7081 - Recall: 0.7094 - Fscore: 0.7082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8442 | 1.0 | 815 | 0.8653 | 0.7642 | 0.6192 | 0.6363 | | 0.5488 | 2.0 | 1630 | 0.9330 | 0.7116 | 0.6838 | 0.6912 | | 0.2713 | 3.0 | 2445 | 1.2350 | 0.7081 | 0.7094 | 0.7082 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1