--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bertkmr-test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: kmr split: test args: kmr metrics: - name: Wer type: wer value: 0.1570856537948175 --- # w2v-bertkmr-test This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2399 - Wer: 0.1571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.8 | 200 | 0.3476 | 0.3257 | | 1.2561 | 1.6 | 400 | 0.2756 | 0.2669 | | 0.1906 | 2.4 | 600 | 0.2484 | 0.2363 | | 0.1906 | 3.2 | 800 | 0.2336 | 0.2177 | | 0.1242 | 4.0 | 1000 | 0.2192 | 0.1919 | | 0.0853 | 4.8 | 1200 | 0.2217 | 0.1879 | | 0.0853 | 5.6 | 1400 | 0.2272 | 0.1786 | | 0.0586 | 6.4 | 1600 | 0.2292 | 0.1695 | | 0.0365 | 7.2 | 1800 | 0.2276 | 0.1613 | | 0.0365 | 8.0 | 2000 | 0.2127 | 0.1626 | | 0.0222 | 8.8 | 2200 | 0.2271 | 0.1568 | | 0.0118 | 9.6 | 2400 | 0.2399 | 0.1571 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1