umiyuki commited on
Commit
8672a04
1 Parent(s): f1988ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - ja
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - Mistral
8
  ---
9
+
10
+ # Japanese-WizardLM2-ChatV-7B-GGUF
11
+ GGUF conversion of "Japanese-WizardLM2-ChatV-7B"
12
+
13
+ This model, Japanese-WizardLM2-ChatV-7B, is based on "chatntq-ja-7b-v1.0 ", and was created by subtracting "Mistral-7B-v0.1" from "WizardLM-2-7b" ChatVector was added by a factor of 1.0.
14
+ We aimed to add the high performance of WizardLM-2 to the Japanese language capability of ChatNTQ.
15
+
16
+ このモデル、Japanese-WizardLM2-ChatV-7Bは、”chatntq-ja-7b-v1.0”をベースに、"WizardLM-2-7b"から"Mistral-7B-v0.1"を差し引いて作ったChatVectorを1.0倍で足しました。
17
+ ChatNTQの日本語能力にWizardLM-2の性能の高さが加わる事を狙いました。
18
+
19
+ ### Performance
20
+
21
+ <table>
22
+ <tr>
23
+ <th>Model<br>(Q8_0 quant)</th>
24
+ <th><a href="https://huggingface.co/CohereForAI/c4ai-command-r-plus">c4ai-command-r-plus(Cohere API)</a></th>
25
+ <th><a href="https://huggingface.co/TFMC/Japanese-Starling-ChatV-7B-GGUF">JA-Starling-ChatV-7B-GGUF(fp16)</th>
26
+ <th>JA-WizardLM2-ChatV-7B-GGUF (This model)(fp16)</th>
27
+ <th><a href="https://huggingface.co/TFMC/ChatNTQ-JA-7b-v1.0-GGUF">ChatNTQ-JA-7b-v1.0-GGUF(Q8_0)</a></th>
28
+ </tr>
29
+ <tr>
30
+ <td>Parameters</td>
31
+ <td>104B</td>
32
+ <td>7B(Mistral)</td>
33
+ <td>7B(Mistral)</td>
34
+ <td>7B(Mistral)</td>
35
+ </tr>
36
+ <tr>
37
+ <td>ELYZAtasks100<br>average score</td>
38
+ <td>4.04</td>
39
+ <td>3.77</td>
40
+ <td>3.40</td>
41
+ <td>2.74</td>
42
+ </tr>
43
+ </table>
44
+
45
+ This score was evaluated by Cohere API command-r-plus using the "<a href="https://huggingface.co/datasets/elyza/ELYZA-tasks-100">ELYZA-tasks-100</a>", a Japanese model with instruction-tuning.
46
+
47
+ このスコアはinstruction-tuningを行った日本語モデルのベンチマーク「ELYZA-tasks-100」を使い、Cohere APIのcommand-r-plusにより評価させたものです。
48
+
49
+ ### Prompt Template
50
+
51
+ - Llama-2-Chat
52
+ <pre><code>[INST] &lt;&lt;SYS&gt;&gt;\nあなたは役に立つアシスタントです。\n&lt;&lt;/SYS&gt;&gt;\n\n{prompt} [/INST]</code></pre>