End of training
Browse files- README.md +90 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: ntu-spml/distilhubert
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- audiofolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: distilhubert-finetuned-accents
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: audiofolder
|
18 |
+
type: audiofolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.39097744360902253
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# distilhubert-finetuned-accents
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.8429
|
36 |
+
- Accuracy: 0.3910
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.7
|
62 |
+
- num_epochs: 14
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.5546 | 1.0 | 67 | 2.5463 | 0.1729 |
|
70 |
+
| 2.4756 | 2.0 | 134 | 2.4641 | 0.1654 |
|
71 |
+
| 2.3726 | 3.0 | 201 | 2.4065 | 0.2030 |
|
72 |
+
| 2.464 | 4.0 | 268 | 2.3753 | 0.2256 |
|
73 |
+
| 2.2215 | 5.0 | 335 | 2.3161 | 0.2481 |
|
74 |
+
| 2.346 | 6.0 | 402 | 2.2739 | 0.2556 |
|
75 |
+
| 1.8318 | 7.0 | 469 | 2.0260 | 0.3383 |
|
76 |
+
| 1.9612 | 8.0 | 536 | 1.8926 | 0.3684 |
|
77 |
+
| 1.7699 | 9.0 | 603 | 1.8646 | 0.3835 |
|
78 |
+
| 1.5864 | 10.0 | 670 | 2.0469 | 0.3083 |
|
79 |
+
| 1.5774 | 11.0 | 737 | 1.8156 | 0.3609 |
|
80 |
+
| 1.5087 | 12.0 | 804 | 1.8061 | 0.3609 |
|
81 |
+
| 1.2649 | 13.0 | 871 | 1.8970 | 0.3383 |
|
82 |
+
| 1.2179 | 14.0 | 938 | 1.8429 | 0.3910 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.36.2
|
88 |
+
- Pytorch 2.1.0+cu121
|
89 |
+
- Datasets 2.16.1
|
90 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94774812
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7dfe61f0a4ab8f1440a923928fa92d12426813615059053d668e1b6e1ba4895
|
3 |
size 94774812
|