Restore new model card
Browse files
README.md
CHANGED
@@ -32,52 +32,35 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
- Accuracy: 0.2708
|
37 |
|
38 |
-
## Model description
|
39 |
-
|
40 |
-
More information needed
|
41 |
-
|
42 |
-
## Intended uses & limitations
|
43 |
-
|
44 |
-
More information needed
|
45 |
-
|
46 |
-
## Training and evaluation data
|
47 |
-
|
48 |
-
More information needed
|
49 |
-
|
50 |
-
## Training procedure
|
51 |
-
|
52 |
-
### Training hyperparameters
|
53 |
-
|
54 |
-
The following hyperparameters were used during training:
|
55 |
-
- learning_rate: 5e-05
|
56 |
-
- train_batch_size: 8
|
57 |
-
- eval_batch_size: 8
|
58 |
-
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
-
- lr_scheduler_warmup_ratio: 0.
|
62 |
-
- num_epochs:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
-
### Training results
|
66 |
|
67 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
|
|
76 |
-
|
|
77 |
-
| 2.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 2.0748
|
36 |
- Accuracy: 0.2708
|
37 |
|
38 |
+
## Model description
|
39 |
+
- seed: 42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_ratio: 0.7
|
43 |
+
- num_epochs: 14
|
44 |
- mixed_precision_training: Native AMP
|
45 |
|
46 |
+
### Training results
|
47 |
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
49 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
50 |
+
| 2.4778 | 1.0 | 48 | 2.4807 | 0.0938 |
|
51 |
+
| 2.4779 | 2.0 | 96 | 2.4651 | 0.1042 |
|
52 |
+
| 2.4751 | 3.0 | 144 | 2.4365 | 0.1042 |
|
53 |
+
| 2.3777 | 4.0 | 192 | 2.4187 | 0.1042 |
|
54 |
+
| 2.3786 | 5.0 | 240 | 2.4050 | 0.1458 |
|
55 |
+
| 2.3754 | 6.0 | 288 | 2.3446 | 0.1458 |
|
56 |
+
| 2.1556 | 7.0 | 336 | 2.2284 | 0.2083 |
|
57 |
+
| 2.1062 | 8.0 | 384 | 2.1533 | 0.2188 |
|
58 |
+
| 2.0081 | 9.0 | 432 | 2.0765 | 0.2292 |
|
59 |
+
| 1.813 | 10.0 | 480 | 2.0671 | 0.2083 |
|
60 |
+
| 1.74 | 11.0 | 528 | 1.9977 | 0.3021 |
|
61 |
+
| 1.4795 | 12.0 | 576 | 2.0588 | 0.2396 |
|
62 |
+
| 1.298 | 13.0 | 624 | 2.0652 | 0.3021 |
|
63 |
+
| 1.2578 | 14.0 | 672 | 2.0748 | 0.2708 |
|
64 |
|
65 |
|
66 |
### Framework versions
|