End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -58,29 +58,26 @@ The following hyperparameters were used during training:
|
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
-
- lr_scheduler_warmup_ratio: 0.
|
62 |
-
- num_epochs:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 2.
|
73 |
-
|
|
74 |
-
| 2.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
|
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
| 1.3872 | 13.0 | 624 | 1.9719 | 0.2292 |
|
82 |
-
| 1.3829 | 14.0 | 672 | 1.9794 | 0.1979 |
|
83 |
-
| 1.3251 | 15.0 | 720 | 1.9825 | 0.2083 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.2708333333333333
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.9466
|
36 |
+
- Accuracy: 0.2708
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.8
|
62 |
+
- num_epochs: 12
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.48 | 1.0 | 48 | 2.4777 | 0.1042 |
|
70 |
+
| 2.473 | 2.0 | 96 | 2.4604 | 0.1562 |
|
71 |
+
| 2.4772 | 3.0 | 144 | 2.4282 | 0.1042 |
|
72 |
+
| 2.3678 | 4.0 | 192 | 2.4007 | 0.1042 |
|
73 |
+
| 2.324 | 5.0 | 240 | 2.3261 | 0.2083 |
|
74 |
+
| 2.2489 | 6.0 | 288 | 2.2360 | 0.1771 |
|
75 |
+
| 1.9909 | 7.0 | 336 | 2.1544 | 0.1875 |
|
76 |
+
| 1.9903 | 8.0 | 384 | 2.0937 | 0.1875 |
|
77 |
+
| 2.0668 | 9.0 | 432 | 2.0222 | 0.2083 |
|
78 |
+
| 1.8473 | 10.0 | 480 | 2.0298 | 0.1875 |
|
79 |
+
| 1.8068 | 11.0 | 528 | 1.9965 | 0.25 |
|
80 |
+
| 1.699 | 12.0 | 576 | 1.9466 | 0.2708 |
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|