Umesh Kumarasamy

umseeker
ยท

AI & ML interests

NLP

Recent Activity

Organizations

None yet

umseeker's activity

Reacted to m-ric's post with ๐Ÿš€ 21 days ago
view post
Post
1623
๐—”๐—ป๐—ฑ๐—ฟ๐—ผ๐—ถ๐—ฑ๐—Ÿ๐—ฎ๐—ฏ: ๐—™๐—ถ๐—ฟ๐˜€๐˜ ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ ๐—ฏ๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ ๐—ณ๐—ผ๐—ฟ ๐—”๐—ป๐—ฑ๐—ฟ๐—ผ๐—ถ๐—ฑ ๐—บ๐—ผ๐—ฏ๐—ถ๐—น๐—ฒ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜€๐—ต๐—ผ๐˜„๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐˜€๐—บ๐—ฎ๐—น๐—น, ๐—ณ๐—ถ๐—ป๐—ฒ-๐˜๐˜‚๐—ป๐—ฒ๐—ฑ ๐—ผ๐—ฝ๐—ฒ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ ๐—ฐ๐—ฎ๐—ป ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ฎ ๐—๐—”๐—ฅ๐—ฉ๐—œ๐—ฆ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ผ๐—ป ๐˜†๐—ผ๐˜‚๐—ฟ ๐˜€๐—บ๐—ฎ๐—ฟ๐˜๐—ฝ๐—ต๐—ผ๐—ป๐—ฒ ๐Ÿ“ฑ๐Ÿ”ฅ

A team from Tsinghua University just released AndroidLab, the first systematic framework to evaluate and train Android mobile agents that works with both text-only and multimodal models.

They show that fine-tuning small open-source models can significantly boost performance, matching that of much bigger closed models like GPT-4o.

The team built:

๐Ÿ“Šย A reproducible benchmark with 138 tasks across 9 apps to evaluate mobile agents systematically

๐Ÿ“๐Ÿ“ฑย A framework supporting both text-only (via XML) and visual (via marked screenshots) interfaces

โœ…ย An instruction dataset of 10.5k operation traces for training mobile agents

Key insights:

- ๐Ÿ“ˆ Fine-tuning improves performance BY A LOT: Open-source model Llama-3.1-8B improves from 2% to 24% success rate after training, nearly reaching GPT-4o performance although itโ€™s much smaller
- โš™๏ธ Text-only agents match multimodal ones: XML-based agents achieve similar performance to screenshot-based multimodal agents.

Read their paper here ๐Ÿ‘‰ AndroidLab: Training and Systematic Benchmarking of Android Autonomous Agents (2410.24024)
Reacted to louisbrulenaudet's post with โค๏ธ 5 months ago
view post
Post
3204
I am delighted to announce the publication of my LegalKit, a French labeled dataset built for legal ML training ๐Ÿค—

This dataset comprises multiple query-document pairs (+50k) curated for training sentence embedding models within the domain of French law.

The labeling process follows a systematic approach to ensure consistency and relevance:
- Initial Query Generation: Three instances of the LLaMA-3-70B model independently generate three different queries based on the same document.
- Selection of Optimal Query: A fourth instance of the LLaMA-3-70B model, using a dedicated selection prompt, evaluates the generated queries and selects the most suitable one.
- Final Label Assignment: The chosen query is used to label the document, aiming to ensure that the label accurately reflects the content and context of the original text.

Dataset: louisbrulenaudet/legalkit

Stay tuned for further updates and release information ๐Ÿ”ฅ

@clem , if we can create an "HF for Legal" organization, similar to what exists for journalists, I am available!

Note : My special thanks to @alvdansen for their illustration models โค๏ธ
  • 2 replies
ยท
Reacted to clem's post with ๐Ÿค—๐Ÿš€ 6 months ago
view post
Post
3650
Who said you couldn't build a big business based on open-source AI? Congrats Mistral team: https://huggingface.co/mistralai
New activity in nvidia/canary-1b 6 months ago