from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.text.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "ungonzal/tweet_eval" learner = from_pretrained_fastai(repo_id) labels = ["positive","negative"] # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(text): #img = PILImage.create(img) pred,pred_idx,probs = learner.predict(text) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(num_top_classes=3),examples=['Man these are the funniest kids ever!! That face! #HappyBirthdayBubb @ FLIPnOUT Xtreme']).launch(share=False)